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Abstract

This paper examines the regularization opportunities available in the adjoint analysis and optimization of multiscale

PDE systems. Regularization may be introduced into such optimization problems by modifying the form of the evo-

lution equation and the forms of the norms and inner products used to frame the adjoint analysis. Typically, L2 brackets

are used in the definition of the cost functional, the adjoint operator, and the cost functional gradient. If instead we

adopt the more general Sobolev brackets, the various fields involved in the adjoint analysis may be made smoother and

therefore easier to resolve numerically. The present paper identifies several relationships which illustrate how the dif-

ferent regularization options fit together to form a general framework. The regularization strategies proposed are

exemplified using a 1D Kuramoto–Sivashinsky forecasting problem, and computational examples are provided which

exhibit their utility. A multiscale preconditioning algorithm is also proposed that noticeably accelerates convergence of

the optimization procedure. Application of the proposed regularization strategies to more complex optimization

problems of physical and engineering relevance is also discussed.
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1. Introduction

Adjoint analysis forms a foundation for many applications of model-based control and estimation theory

to nonlinear fluid systems, including:

(A) transonic airfoil shape optimization [1],

(B) optimization of open-loop control distributions for transitional and turbulent flow systems [2–5], and

(C) state reconstruction and parameter estimation in numerical weather prediction (known operationally

as ‘‘4D-VAR’’) [6].
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For recent general reviews we refer the reader to, e.g. Gunzburger [7] and Sritharan [8]. In order to

apply adjoint analysis, an appropriately defined cost functional is first expressed which represents math-

ematically the physical objective in performing the computational optimization. In problem A, the ob-
jective is typically to maximize the lift/drag ratio of the airfoil for a range of different cruise configurations

while respecting a variety of practical ‘‘feasibility’’ constraints related to the construction of the airfoil. In

problem B, the objective is typically to reduce drag, surface pressure fluctuations, or flow-induced noise or

to reduce the kinetic energy of the flow perturbations in order to inhibit transition to turbulence, though

in combustion applications the objective is typically the opposite – that is, to excite the flow with minimal

control input in order to enhance turbulent mixing. In problem C, the objective is typically to reconcile

the numerical weather model with recent weather measurements in order to obtain accurate weather

forecasts. All of the above problems in fact represent inverse problems, in which one seeks to determine
inputs to the system such that the outputs will have desired properties. Once the control objective is

expressed mathematically as a cost functional, an appropriately defined adjoint field may be used as a tool

to determine an appropriately defined gradient of the cost functional with respect to the control variables.

The adjoint field calculation is thus a central component of high-dimensional gradient-based control

optimization strategies. Refs. [5,9] contain brief reviews of our perspective on a few of the relevant issues

related to such problems.

Even though the mathematical framework for adjoint-based optimization is fairly mature and has al-

ready been used successfully in a broad range of applications in fluid mechanics, many flow systems still
present fundamental challenges to this approach. Due to their nonlinear nature, fluid-mechanical systems

are often characterized by energetic motions over a broad range of length scales and time scales. Numerical

computations of such flows must be performed with care to account properly for this broad range of scales.

Adjoint analyses of such flows must also be crafted with care in order to be well behaved over this full range

of scales. Inverse problems are often ill-posed in the sense that multiple solutions which locally minimize the

relevant cost functional exist, and the solution found by the optimization algorithm does not necessarily

have a continuous dependence on the data provided. For instance, in numerical weather prediction, the

problem of finding the future state of the nonlinear model based on past measurements is often ill-posed in
this regard. In such problems, errors magnify exponentially in time in the linearized (‘‘perturbation’’)

analysis. In the iterative numerical solution of such an inverse problem in the nonlinear setting, a small

change in the data provided (the measurements) can sometimes lead to a large change in the forecast. Even

in the control of laminar flows, adjoint fields typically grow exponentially when they are calculated (in

reverse time), and can thus be exceedingly difficult to resolve in regions where flow perturbations amplify

quickly, such as in thin shear layers.

The presence of a broad range of interacting length- and time-scales thus complicates an adjoint-based

analysis of a nonlinear multiscale system by causing difficulties of twofold nature: on the one hand, the
dependence of the solution on the data in such cases is irregular, resulting in the presence of many local

minima of the cost functional; on the other hand, the various fields involved in an adjoint analysis are not

smooth and therefore difficult to resolve numerically. These two issues are related, and may be addressed, at

least partially, by considering the regularity of the various fields involved in the analysis of such systems.

We therefore define the term regularization rather broadly in the present work as a reformulation of an

adjoint-based algorithm in such a manner that at least some of the fields involved in this analysis are more

‘‘smooth’’, in the sense that the energy spectrum in these fields decays more rapidly with wavenumber at the

length scales of concern from the perspective of a numerical implementation (throughout this paper by
‘‘energy spectrum’’ we will mean the ‘‘kinetic energy spectrum’’). Such regularization will thus render a

given optimization problem more amenable to numerical treatment, and may sometimes turn an initially ill-

posed problem into a well-posed problem. A more narrow definition of the term regularization is often

adopted in the precise mathematical study of ill-posed inverse problems (see [10–12]); however our broader

usage of the term is adequate for the present investigation.
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Though great attention has been paid to the appropriate treatment/modeling of subgrid-scale (SGS) effects

in the numerical simulation literature, much less is known about how to address themultiscale nature of fluid-

mechanical systems in adjoint analysis. The central issue is that norms and inner products, collectively to be
referred to in this paper as ‘‘brackets’’, are implied, if not explicitly stated, at three distinct steps of the deri-

vation of an adjoint analysis. Each of these brackets implies a relative weighting between the various length

scales and time scales in the relationship expressed. ‘‘Traditional’’ approaches have typically selected L2

brackets at most, if not all, of these steps in the adjoint formulation. However, this choice is by no means

unique. Other choices are sometimes more appropriate when the system must be solved on a computer with

finite-precision arithmetic using a discrete numerical grid in both space and time.Modifying the definitions of

the three brackets used to frame the adjoint analysis facilitates a range of distinct but related regularization

opportunities. Capitalizing on these regularization opportunities can result in significantly smoother space–
time systems requiring numerical approximation in the adjoint analysis. The purpose of the present paper is to

clarify these important regularization opportunities and to illustrate how they may be used in concert to in-

crease the speed, stability, and accuracy of adjoint-based numerical optimization algorithms.

The possibility of achieving a regularizing effect through modification of some of the brackets used in the

derivation of an adjoint algorithm was already recognized by Collis et al. [13]. A similar set of ideas, but in

the finite-dimensional setting, was earlier suggested by Heinkenschloss and Vicente [14]. Concepts related to

the use of Sobolev inner products to extract different cost functional gradients were developed by Neu-

berger [15], who employed these ideas in the solution of direct problems involving differential equations.
Applications to optimization problems were recently considered by Sial et al. [16]. Other approaches ex-

plicitly addressing data assimilation in multiscale environments include the works of Liu [17], Brandt and

Zaslavsky [18], Grimstad and Mannseth [19], and Brusdal and Mannseth [20]. In particular, [17] and [20]

invoke the concept of ‘‘basis norm rescaling’’, which is further elaborated here. Multigrid approaches to

optimization problems were studied by Lewis and Nash [21]. Similar ideas also appear in the Numerical

Weather Prediction (NWP) literature: e.g., Lorenc [22] discussed performing optimization with respect to a

rescaled variable, whereas Thepaut and Moll [23] recognized the possibility of using various inner products

to precondition the adjoint algorithm. An adaptive method to enforce smoothness constraints in data
assimilation was recently presented by Lin et al. [24]. In the present study, we attempt to synthesize these

various regularization opportunities into a more unified framework and characterize the interplay between

the various definitions of the brackets upon which adjoint analyses are based.

To make this study concrete, the bulk of the paper illustrates how these regularization techniques may be

applied to a Kuramoto–Sivashinsky model system. This 1D model problem illustrates self-sustained chaotic

behavior of a multiscale nature, and thus provides an appropriate testbed for the present study. The

Kuramoto–Sivashinsky equation was used successfully as a low-dimensional prototype for complicated

fluid systems by Holmes et al. [25]. In fact, many advanced flow control strategies were initially investigated
using similar 1D models; see, e.g. [26–28].

In Section 2 we identify and discuss in general terms the four fundamental classes of regularization oppor-

tunities available in the framing of an adjoint analysis. As a point of reference, the standard optimization

framework for the Kuramoto–Sivashinsky model is formulated in Section 3. The different regularization pos-

sibilities available in framing the adjoint analysis, and interrelationships between these different formulations,

are discussed in Section 4, and some numerical examples are presented in Section 5. Several extensions of this

study are also underway, and are briefly introduced in Section 6. Concluding remarks are presented in Section 7.
2. The four fundamental classes of regularization opportunities

In the adjoint-based optimization of unsteady PDE systems in general, there are three spatial domains of

interest: the domain on which cost functional is defined, which we denote X1, the domain over which the
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state of the system modeled, which we denote X2, and the domain on which the control is applied, which we

denote X3. In an unsteady problem, the system model is defined on X2 over some time interval ½0; T �. The
cost functional which measures this model on X1 may average over the interval ½0; T �, as in ‘‘regulation’’
problems, or may focus the attention on the state at time t ¼ T , which is called a ‘‘terminal control’’

problem. The control on X3 can also be defined over ½0; T �, when an unsteady control distribution is sought,

or may be defined at time t ¼ 0, as done in the forecasting problem (where the ‘‘control’’ is actually the

initial condition). In the process of adjoint-based optimization, brackets are used (or implied, if not ex-

plicitly stated) on all three of these space–time domains.

In the continuous setting, the form of each of these three brackets may incorporate either derivatives or

‘‘anti-derivatives’’ in both space and time. Mathematically, these brackets are related to the natural

measures for functions defined in the Sobolev space Hpð0; T ;HqðXiÞÞ, where q is the differentiability order in
space, p is the differentiability order in time, and Xi denotes the spatial domain. Note that Sobolev brackets

with negative differentiability indices can also be considered in this framework by taking p and/or q neg-

ative. Such brackets are natural alternatives to the L2 bracket when considering functions of different de-

grees of regularity in both space and time. How each of these brackets is defined, in addition to any

smoothing that might be applied to the state equation itself, has important consequences on the smoothness

of the several variables in the optimization problem, as summarized in Fig. 1. As a shorthand, we use W1,

W2, and W3 to identify the brackets selected for the three space–time domains of interest in this problem.

Note that, even though we have borrowed certain concepts from the functional analysis literature in the
present discussion, and even though much of the presentation in this paper will be in a compact infinite-

dimensional notation to facilitate interpretation, the present paper specifically does not concern the

problem of functional analysis, which would involve the mathematical characterization of the precise de-

gree of differentiability of each of the quantities involved in the optimization process. Functional analysis is

essential for establishing well-posedness (i.e., existence and uniqueness of solutions, and their continuous

dependence on data) for many optimization problems governed by PDEs. However, it provides little

practical advice regarding the efficient numerical solution of the corresponding optimization problems in

the finite-dimensional setting, an issue which is of primary interest to us here. Furthermore, well-posedness
has not yet been established (even in the uncontrolled setting) for many systems important from the

physical and engineering point of view, such as 3D Navier–Stokes systems with large data. Nevertheless,

optimization problems governed by such PDEs are very important from the application perspective, and in

this work we develop a generic computational framework which does not depend on how much is known a

priori about well-posedness of the underlying PDE system. We will assume (without further justification)

that the energy content of all of the fields involved (the control, the state, etc.) eventually decays expo-

nentially with wavenumber, and thus these fields belong to the class C1ð0; T ;C1ðXiÞÞ, so that they may be
Fig. 1. The four essential components of the adjoint-based optimization process. As outlined in the text, each component of this

process is associated with a distinct opportunity for regularization.
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differentiated as many times as necessary in the analysis that follows. In fact, in our finite-dimensional

calculations, we will typically form some type of spectral truncation so that the energy content of the fields

we actually compute is precisely zero at sufficiently small length scales. To summarize, the present paper is
not about the mathematical characterization of when a particular optimization problem governed by PDEs

is well-posed, but rather it is about the engineering problem of how to get adjoint analysis to work effi-

ciently on multiscale systems obtained by discretizing a given PDE optimization problem, whether or not

such a characterization of well-posedness of the corresponding infinite-dimensional problem is tractable.

The first regularization opportunity is given by adding an artificial (but well-motivated) term to the

discretized state equation itself. Two common examples are dynamic subgrid-scale models (in turbulence

research) and hyperviscosity (in numerical weather prediction). Addition of such a term to the numerical

model is useful for tuning the behavior of the numerical model at the unresolvable scales, and may also be
needed for numerical stability. In addition to modifying the actual governing equation, we can also con-

sider its different derived forms (e.g., the vorticity form instead of the velocity–pressure form of the Navier–

Stokes equation). These different yet equivalent forms may serve to focus on different aspects of the

dynamics in numerical simulations and adjoint analyses thereof.

The second regularization opportunity is given by the definition of the cost functional. As mentioned

previously, the cost functional can take any of a wide variety of forms depending on the problem under

consideration. However, in most such formulations, the cost functional involves the norm of a flow

quantity taken over some subdomain of the space–time domain under consideration. Selecting for this
purpose a norm W1 which incorporates either derivatives or anti-derivatives, instead of using the standard

L2 norm, effectively builds in a ‘‘filter’’ into the definition of the cost functional, thereby allowing extra

emphasis to be placed on certain scales of interest in the multiscale problem. Note that the cost functional

may also incorporate a term penalizing the magnitude of the control on X3, using an appropriate norm in

order to limit the magnitude of the control that results from the optimization. 1 Such an approach is known

as Tikhonov regularization [29]. Analysis of the effect of this additional term on the stability of the opti-

mization algorithm is deferred to Section 4.5.6.

The third regularization opportunity is given by the form of the inner product which is used to define the
adjoint operator and, ultimately, the adjoint field itself. Incorporating derivatives or anti-derivatives into

the definition of the inner product W2, instead of using the standard L2 inner product, can be useful to

obtain well-behaved (that is, numerically tractable) adjoint operators.

Finally, the fourth regularization opportunity is the definition of the inner product used to extract the

cost functional gradient. Incorporating derivatives into the inner product W3, instead of using the standard

L2 inner product, has the effect of scale-dependent filtering, and allows one to extract smoother gradients,

thereby preconditioning the optimization process.

The above regularization opportunities fall into two categories: those which affect the descent direction
(modifying the cost functional and the gradient extraction procedure) and those which affect how a given

gradient is computed (modifying the form of the governing equation and the form of the adjoint identity).

In the discrete setting, the options belonging to the first category affect the conditioning of the optimization

problem, whereas the options belonging to the second category affect the complexity of the gradient

computation. In the present paper we characterize the interplay of the different regularization options in the

discrete setting and discuss how they can be used in concert to improve adjoint-based analyses of difficult

multiscale problems of both physical and engineering interest, such as high Reynolds number turbulence. In

our analysis below we will seek to delineate the different generic opportunities available, but will not
1 Note that inclusion of such a term is sometimes, but not always, necessary to insure that the optimization problem has a bounded

solution. See [5] for further discussion.
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attempt to formulate specific recommendations regarding how they should be applied in a given problem-

specific context.
3. Forecasting a Kuramoto–Sivashinsky system: the standard framework

In this section, we first describe three different yet equivalent forms of a dynamically rich 1D model
system governed by the Kuramoto–Sivashinsky equation, then outline a relatively standard adjoint-based

algorithm for the forecasting of this system based on limited noisy measurements. In the section that

follows, we illustrate, in turn, the application of the four regularization opportunities summarized above.

The Kuramoto–Sivashinsky equation [30,31] has been widely studied due to its chaotic, pattern-forming

behavior. Out of the several different normalizations of the parameters of this system which are available in

the literature, we have selected the one proposed by Hyman and Nicolaenko [32], in which the system is

written

otuþ 4o4xuþ j o2xuþ 1
2
ðoxuÞ2

h i
¼ 0; x 2 X; t 2 ½0; T �;

oixuð0; tÞ ¼ oixuð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;
uðx; 0Þ ¼ w; x 2 X;

8><>: ð1Þ

where we define oix, ðoi=oxiÞ. Integrating this system over the domain X, ½0; 2p�, the evolution of the mean

of u is given by ot
R 2p
0

udx ¼ �ðj=2Þ
R 2p
0
ðoxuÞ2 dx 6¼ 0. For this reason, it is common to transform the system

(1) into a different form, which is achieved by first differentiating it with respect to x and then re-expressing

it in terms of a new variable v,oxu such that

otvþ 4o4xvþ j o2xvþ voxv
� �

¼ 0; x 2 X; t 2 ½0; T �;
oixvð0; tÞ ¼ oixvð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;
vðx; 0Þ ¼ oxw,/; x 2 X:

8<: ð2Þ

This is the form of the Kuramoto–Sivashinsky system that is studied most often. As v ¼ oxu and u is pe-

riodic in x, it follows immediately that
R 2p
0

vdx ¼ 0 for all t. The variable u can be recovered from v by

inverting the differential operator ox and accounting for the mean of u properly. For this purpose we define

the ‘‘anti-derivative’’ operator o�1
x such that

o�1
x zðxÞ,

Z x

0

zðx0Þdx0 � 1

2p

Z 2p

0

Z s

0

zðx0Þdx0 ds:

Note that the constant is selected such that
R 2p
0

o�1
x zðxÞdx ¼ 0. Using this operator, we may recover u from v

with

uðx; tÞ ¼ o�1
x vðx; tÞ þ 1

2p

Z 2p

0

wðx0Þdx0 � j
4p

Z t

0

Z 2p

0

½vðx0; t0Þ�2 dx0 dt0:

Yet another form of the Kuramoto–Sivashinsky system can be obtained by further differentiating the

system (2) and defining w,oxv

otwþ 4o4xwþ j o2xwþ w2 þ o�1
x woxw

� �
¼ 0; x 2 X; t 2 ½0; T �;

oixwð0; tÞ ¼ oixwð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;
wðx; 0Þ ¼ ox/,u; x 2 X:

8<: ð3Þ

In the derivations to come, we will primarily focus on system (2), which we will dub the primitive formu-

lation. By analogy with the equations of fluid dynamics, we will refer to the integral form (1) as the
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streamfunction formulation and the derivative form (3) as the vorticity formulation of the Kuramoto–

Sivashinsky system; the same qualifiers will be used with regard to the corresponding variables. In the

above equations the parameter j has an interpretation similar to Reynolds number in fluid systems. For
sufficiently large values of this parameter, the Kuramoto–Sivashinsky system exhibits self-sustained, cha-

otic dynamics. Issues related to the functional setting of this equation and characterization of its attractor

are discussed in Temam [33].

We now review the relatively standard framework for adjoint-based data assimilation in PDE systems by

focusing on an admittedly contrived, yet dynamically rich, 1D model forecasting problem based on the

Kuramoto–Sivashinsky system discussed above. Extensions of these approaches for the regularization of

adjoint analyses in more realistic forecasting and control problems in fluid mechanics are discussed in

Section 6. In the model problem to be considered, the three spatial domains Xi; i ¼ 1; 2; 3, mentioned in the
previous section happen to coincide. Note that this will not necessarily be the case in general (cf. Section

6.2). More precisely, the ‘‘control’’, which is taken to be the initial condition / in this problem, is defined

on X ¼ ½0; 2p� at time t ¼ 0, whereas both the system evolution and the cost functional are defined on

X� ½0; T �. We begin by first defining the norm

kzk2L2ð0;T ;L2ðXÞÞ,
Z T

0

Z 2p

0

z2 dxdt; ð4Þ

and then attempting to minimize the cost functional

Jð/Þ ¼ 1

2
kHv� yk2L2ð0;T ;L2ðXÞÞ; where y ¼ Hvact þ g; ð5Þ

vact is the ‘‘actual’’ state (which is unknown to the forecasting algorithm), and v is the ‘‘reconstructed’’ state,
which is assumed to be related to the initial state / (the quantity to be determined in the reconstruction

problem) via the primitive form (2) of the Kuramoto–Sivashinsky system. Note that H denotes the ‘‘ob-

servation’’ operator, y denotes the corresponding noisy measurements taken of the system, and g denotes

the measurement noise. The problem to be solved is to find the initial state / in the reconstruction problem
which will minimize J, thereby minimizing the deviation of the measurements from the corresponding

quantities in the reconstructed system. The observation operator H which we have selected for this model

problem is based on the cosine decomposition of the flow system. To define H, we will make use of a linear

projection operator Pr defined such that

Prz,
1

p

Z 2p

0

cosðrx0Þzðx0Þdx0
� �

cosðrxÞ: ð6Þ

Note that the projection operator so defined satisfies P2
r ¼ Pr. We now define the observation operator as

H,

X
r2Kr

Pr; ð7Þ

where Kr is the set of modes which we choose to observe.

For Jð/Þ to be minimized by /, it is necessary that, in the immediate neighborhood of /, the pertur-

bationJ0 of the cost functionalJ that arises from perturbations e/0 to the control distribution / vanish for
all feasible directions /0 as e is made small. To be precise, the quantity J0ð/;/0Þ is defined by a limiting

process as the differential 2 of the cost functional J with respect to / such that
2 In the present work we assume that Jð/Þ is sufficiently smooth that it is differentiable, which is a usual assumption in numerical

optimization studies.
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J0ð/;/0Þ, lim
e!0

Jð/þ e/0Þ �Jð/Þ
e

: ð8Þ

To summarize, if Jð/Þ is minimized by /, then J0ð/;/0Þ ¼ 0 for all feasible /0; this is referred to as the
first-order necessary optimality condition for the present problem. Higher-order differentials may also be

considered (namely, the second-order sufficient optimality condition), however, we will not make use of

such higher-order expressions in this paper.

The differential of the cost functional defined in (5) can now be calculated in the neighborhood of some

state vð/Þ, which yields

J0ð/;/0Þ ¼
Z T

0

Z 2p

0

ðHv� yÞHv0 dxdt; ð9Þ

where, by linearization of (2), it follows that v0ð/;/0Þ is the solution of the system

Lv0 ¼ 0; x 2 X; t 2 ½0; T �;
oixv

0ð0; tÞ ¼ oixv
0ð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;

v0ðx; 0Þ ¼ /0; x 2 X;

8<: ð10Þ

where the linear operator L is

Lv0,otv0 þ 4o4xv
0 þ j o2xv

0�
þ voxv0 þ ðoxvÞv0

�
ð11Þ

and vð/Þ is the solution of (2). Note that, as was the case with v, it follows immediately that
R 2p
0

v0 dx ¼ 0 for

all t.
Numerically, the optimal initial state / and the corresponding evolution of the system v cannot be

determined solely from the mathematical statement of the first-order necessary optimality condition, that is,

the vanishing of the differential of the cost functional at the optimum distribution of / for all feasible /0. A

stable numerical procedure to find such a minimum of Jð/Þ even when no good initial guess of the op-

timum controls is available (which is quite often the case) is to use an iterative gradient-based optimization

procedure: given some initial guess /0 for the initial conditions /, consecutive refinements /ðnÞ are com-

puted using a gradient-based optimization algorithm 3 until convergence to a (local) minimum of J is

obtained. In order to apply such a gradient-based optimization procedure, we need somehow to define a
gradient in the space of the control distributions. This is accomplished by identifying the differential (9) as

an appropriately defined inner product of a quantity, which we will denote rJ, with the control pertur-

bation /0. The quantityrJ so defined represents the rate of change inJ when / is updated an infinitesimal

amount in the direction /0. We thus identify rJ as a gradient in the space where the metric, which ef-

fectively defines angles and distances, is given by the inner product selected. Significantly, note that different

choices of this inner product will result in different gradients of J for a particular value of the control

distribution /. However, for convex J, all such definitions of the gradient eventually lead to the same

minimizer (that is, the optimal value of /), at which rJ ¼ 0 regardless of the inner product used to define
the gradient.

The most common choice for the inner product used to extract the gradient rJ from the expression for

J0 is the L2 inner product and, for the time being, our derivation is performed using this inner product, that

is
3 In such high-dimensional optimization problems, quasi-Newton methods utilizing Hessians of the cost functional are becoming

increasingly popular (see, e.g. [34]). The concepts discussed in this paper appear to extend to such optimization algorithms; such

extensions will be considered in future work.
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J0
, ðrJ;/0ÞL2ðXÞ,

Z 2p

0

ðrJÞ/0 dx: ð12Þ

In order to identify rJ, we first need to transform the expression (9) into a form in which the control

perturbation /0 is factored out in a convenient manner, as shown above. Note that v0 is related to /0

through the involved yet linear relationship (10). To accomplish this factorization, we introduce the fol-

lowing inner product:

hz1; z2iL2ð0;T ;L2ðXÞÞ,
Z T

0

Z 2p

0

z1z2 dxdt: ð13Þ

Based on this bracket, we may derive an adjoint operator L� and a corresponding boundary term bL from

the following identity:

hv�;Lv0iL2ð0;T ;L2ðXÞÞ ¼ hL�v�; v0iL2ð0;T ;L2ðXÞÞ þ bL: ð14Þ

Using integration by parts and the definition of L given in (11), it follows that

L�v� ¼ � otv� þ 4o4xv
� þ j o2xv

��
� voxv�

�
; and bL ¼

Z 2p

0

v�v0 dx
� �t¼T

t¼0

þ
Z T

0

4 v�o3xv
0��
� ðoxv�Þo2xv0 þ o2xv

�� �
oxv0 � o3xv

�� �
v0
�
þ j v�oxv0
�

� ðoxv�Þv0 þ v�vv0
�
dt
�x¼2p

x¼0

:

ð15Þ

Making use of the adjoint operator derived above, we may now define an adjoint system in the following (as

yet, arbitrary) manner:

L�v� ¼ H�ðHv� yÞ,f ; x 2 X; t 2 ½0; T �;
oixv

�ð0; tÞ ¼ oixv
�ð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;

v�ðx; T Þ ¼ 0; x 2 X;

8<: ð16Þ

where H� is defined in a manner analogous to L� in (14), and thus it is easy to show that H is self-adjoint
(that is, thatH� ¼ H). We will refer to (16) as the primitive adjoint system and to v� as the primitive adjoint

variable. We now combine the state, perturbation, and adjoint systems [(2), (10), and (16)] into the identity

given in (14). Note that all the boundary terms in bL resulting from integrations by parts in space vanish

due to periodicity. 4 Due to the choice of the RHS forcing term in the adjoint system (16), we may use (14)

to re-express the differential given in (9) in the desired factored form

J0ð/;/0Þ ¼
Z 2p

0

v�jt¼0/
0 dx ¼ v�

			t¼0;/
0:


 �
L2ðXÞ

; ð17Þ

where v� denotes the solution of the adjoint problem defined in (16). Finally, note that the mean of the

adjoint field defined by (16) is not zero, yet all feasible /0 under consideration have zero mean mode.

Because of this restriction on the class of /0 under consideration, (17) is in fact equivalent to

J0ð/;/0Þ ¼ ð�v�jt¼0;/
0ÞL2ðXÞ, where the overbar implies that the given variable has the mean mode removed,

that is,
4 Without further mention, we will make use of this fact in many of the transformations to follow.
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�z, z� 1

2p

Z 2p

0

zdx: ð18Þ

Note that �v� denotes an ‘‘orthogonal projection’’ with respect to the inner product (12) of the adjoint

variable v� onto the space of feasible /0. Thus, the gradient which we seek in the space of feasible /0, as

indicated in (12), may now be identified as

rJ ¼ �v�jt¼0: ð19Þ

The gradient so defined can now be used to find the optimal feasible initial condition using any of a number

of standard gradient-based optimization algorithms.
4. Regularizing the Kuramoto–Sivashinsky forecasting problem

In the subsections that follow, we discuss how the regularization opportunities introduced in Section 2

can be applied to fine-tune the adjoint algorithm outlined in Section 3 to better treat multiscale phenomena.

In this discussion, we will first investigate adjoint analyses based on the different yet equivalent forms (1)

and (3) of the governing equation (2). We will then consider a variety of alternative definitions of the three

distinct brackets at the heart of the adjoint formulation, as outlined in Section 2 and listed in the above
‘‘standard’’ formulation as

• the norm k � kW1
in (4), which is used to define the cost functional,

• the inner product h�; �iW2
in (13), which is used to define the adjoint operator, and

• the inner product ð�; �ÞW3
in (12), which is used to define the gradient.

Note that, in the standard formulation given in Section 3, L2 brackets over the appropriate space–time

domains were used in all three cases. In the subsections to come, we will discuss at length the effects of

various choices for W1, W2, and W3. In particular, we will make extensive use of the following brackets:

kzk2L2ð0;T ;HqðXÞÞ,

Z T

0

Z 2p

0

oqxz
� �2

dxdt; ð20aÞ
hz1; z2iL2ð0;T ;HqðXÞÞ,

Z T

0

Z 2p

0

oqxz1
� �

oqxz2
� �

dxdt; ð20bÞ
ðz1; z2ÞHqðXÞ,

Z 2p

0

oqxz1
� �

oqxz2
� �

dx; ð20cÞ

which are related to seminorms on the Sobolev spaces HqðXÞ. To simplify the nomenclature, we will refer to

these brackets as simply Hq inner products or norms (though we will not make use of any of the sophis-

ticated mathematical machinery of functional analysis in Sobolev spaces). For simplicity, we will restrict

our attention to the cases with q ¼ 0 and �1, though higher-order derivatives may also be considered. Note
that the special case of q ¼ 0 reduces the Hq brackets defined above to the L2 cases considered previously, as

defined in (4), (13), and (12). Also, the present paper will focus on brackets incorporating spatial derivatives

only. Formulations generalizing the bracket definitions to include time derivatives as well as space deriv-

atives are also possible, as discussed briefly in Appendix A. Finally, note that it is straightforward to extend

these bracket definitions by taking linear combinations of the Hq brackets for various values of q. This fact
was recognized previously in [5] for the purpose of extending the definition of the norm used in the cost

functional, thereby focusing the cost functional on the particular range of length scales of interest in the

system under consideration. In the present work (in Section 4.4), we will develop this extension further by
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demonstrating how it may be applied to the definition of the inner product used to extract the gradient,

thereby preconditioning the optimization process in a tunable manner. It should be emphasized that, in

accordance with our ultimate interest in discrete problems, the subscripts used on the brackets (20a)–(20c)
do not imply any differentiability property of the states z1 and z2, but rather a different weighing of the

Fourier components of their discretizations. In this discussion, the following inner product, defined as a

weighted linear combination of the L2, H 1, and H�1 inner products, will be used heavily

ðz1; z2ÞW l1 ;l�1 ,
l2�1

1þ l21ð Þ 1þ l2�1ð Þ

Z 2p

0

z1z2

�
þ l21l

2
�1

l21 þ l2�1

ðoxz1Þðoxz2Þ þ
1

l21 þ l2�1

o�1
x z1

� �
o�1
x z2

� ��
dx: ð21Þ

The justification for the specific choice used above for the coefficients weighing the three terms will become

apparent in Section 4.4. Taking the appropriate limits as l1 and l�1 approach zero and infinity, it follows

that

ðz1; z2ÞW 0;1 ¼ ðz1; z2ÞL2ðXÞ; ðz1; z2ÞW1;1 ¼ ðz1; z2ÞH1ðXÞ; ðz1; z2ÞW 0;0 ¼ ðz1; z2ÞH�1ðXÞ:

The form ðz1; z2ÞW l1 ;1 is thus a linear combination of the L2 and H 1 inner products, whereas ðz1; z2ÞW 0;l�1 is a
linear combination of the H�1 and L2 inner products. We will use the symbols W l1;l�1 , W l1;1 and W 0;l�1 to

refer to these different inner products. Symbols representing the spatial components of the different brackets

will be used as superscripts to identify the way in which the different objects (that is, the cost functionals, the

adjoint operators with the associated adjoint variables, and the cost functional gradients) are constructed.

When such symbols are omitted, L2 brackets are implied (see Section 3).

4.1. The adjoints of alternative forms of the evolution equation

As indicated in (1) and (3), by applying integral or differential operators to the governing equation in the

primitive form (2) and suitably redefining the state variable, we obtain a family of systems representing the

same conservation law, but emphasizing different aspects (length scales) of the system dynamics. Needless

to say, all of these systems are formally equivalent. However, they are characterized by different energy

spectra. Thus, we can expect that the adjoint operators derived from these equations might be different as

well, with some forms possibly being easier to compute than others. In this subsection, we present two

alternative forms of the adjoint operator using the standard L2 brackets in all three steps of the adjoint

derivation, essentially reproducing the ‘‘standard’’ derivation of Section 3, but applying it to the stream-
function and vorticity forms of the governing equation presented in (1) and (3). The subsequent three

subsections discuss the effects of choosing alternative forms for the three brackets used in the adjoint

derivation. A detailed summary of the inter-relationships between these options is presented in Section 4.5.

4.1.1. The standard adjoint derivation based on the vorticity formulation

We now proceed to minimize the original cost functional (5) by modeling the system evolution with the

vorticity form (3) of the Kuramoto–Sivashinsky system. Specifically, we consider a cost functional written

in the form

JuðuÞ ¼
1

2
Ho�1

x w
�� � y

��2
L2ð0;T ;L2ðXÞÞ

: ð22Þ

Note that, as o�1
x w ¼ v, Ju is equivalent to J, but depends on the control variable u ¼ ox/, that is,

Juðox/Þ ¼ Jð/Þ. The differential of this cost functional can now be expressed as

J0
uðu;u0Þ ¼ �

Z T

0

Z 2p

0

o�1
x H� Ho�1

x w
��

� y
��
w0 dxdt; ð23Þ



60 B. Protas et al. / Journal of Computational Physics 195 (2004) 49–89
where integration by parts was used to reveal explicit dependence of J0
u on the vorticity perturbation

w0ðu;u0Þ. The boundary terms obtained as a result of this transformation vanish due to periodicity of all the

variables involved. The field w0 satisfies the system obtained by linearizing (3)

Mw0 ¼ 0; x 2 X; t 2 ½0; T �;
oixw

0ð0; tÞ ¼ oixw
0ð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;

w0ðx; 0Þ ¼ u0; x 2 X;

8<: ð24Þ

where the linear operator M is

Mw0
,otw0 þ 4o4xw

0 þ j o2xw
0�
þ 2ww0 þ o�1

x w0oxwþ o�1
x woxw0� ð25Þ

and wðuÞ is the solution of (3). By an identity of the same form as (14), that is,

hw�;Mw0iL2ð0;T ;L2ðXÞÞ ¼ hM�w�;w0iL2ð0;T ;L2ðXÞÞ þ bM; ð26Þ

it follows [cf. (15)] that

M�w� ¼ �otw� þ 4o4xw
� þ j o2xw

��
þ o�1

x ðwoxw�Þ � o�1
x woxw��;

bM ¼
Z 2p

0

w�w0 dx
� �t¼T

t¼0

þ
�
. . .

�x¼2p

x¼0

:
ð27Þ

Making use of this adjoint operator, we define the vorticity adjoint system [cf. (16)] with

M�w� ¼ �o�1
x H� Ho�1

x w� y
� �

; x 2 X; t 2 ½0; T �;
oixw

�ð0; tÞ ¼ oixw
�ð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;

w�ðx; T Þ ¼ 0; x 2 X:

8<: ð28Þ

Defining the gradient rJu such that

J0
u, rJu;u

0� �
L2ðXÞ

; ð29Þ

it follows by an analogous derivation that

rJu ¼ �w�jt¼0; ð30Þ

where the projection operator implied by the overbar is defined as in (18).

4.1.2. The standard adjoint derivation based on the streamfunction formulation

We may also minimize the cost functional (5) by modeling the system evolution with the streamfunction

form (1) of the Kuramoto–Sivashinsky system. Specifically, we consider a cost functional written in the

form

JwðwÞ ¼
1

2
kHoxu� yk2L2ð0;T ;L2ðXÞÞ: ð31Þ

If we restrict w to have zero mean mode, then it follows that w ¼ o�1
x /. Noting that oxu ¼ v, it is seen that

Jw is equivalent to J, that is, Jwðo�1
x /Þ ¼ Jð/Þ. The differential of Jw is

J0
wðw;w

0Þ ¼ �
Z T

0

Z 2p

0

oxH
�ðHoxu½ � yÞ�u0 dxdt; ð32Þ

where, by linearization of (1), it follows that u0ðw;w0Þ is the solution of the system
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Ku0 ¼ 0; x 2 X; t 2 ½0; T �;
oixu

0ð0; tÞ ¼ oixu
0ð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;

u0ðx; 0Þ ¼ w0; x 2 X;

8><>: ð33Þ

where the linear operator K is

Ku0,otu0 þ 4o4xu
0 þ j o2xu

0�
þ ðoxuÞðoxu0Þ

�
ð34Þ

and uðwÞ is the solution of (1). By the identity

hu�;Ku0iL2ð0;T ;L2ðXÞÞ ¼ hK�u�; u0iL2ð0;T ;L2ðXÞÞ þ bK; ð35Þ

it follows that

K�u� ¼ �otu� þ 4o4xu
� þ j o2xu

��
� oxðu�oxuÞ

�
:

Making use of this adjoint operator, we define the streamfunction adjoint system with

K�u� ¼ �oxH
�ðHoxu� yÞ; x 2 X; t 2 ½0; T �;

oixu
�ð0; tÞ ¼ oixu

�ð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;

u�ðx; T Þ ¼ 0; x 2 X:

8><>: ð36Þ

Defining the gradient rJw such that

J0
w, rJw;w

0

 �

L2ðXÞ
; ð37Þ

it follows that

rJw ¼ u�jt¼0: ð38Þ
4.2. Targeting the cost functional

As indicated in (20a), the definition of the cost functional may be generalized by taking the Hq norm

(rather than the L2 norm) of the quantity of interest (in the present case, the measurement misfit 5). By so

doing, we can focus the cost functional on a particular range of length scales of interest. For example,

taking the H 1 norm [see (20a)] of the misfit of the measurement y, we define [cf. (5)]

JH1ð/Þ ¼ kHv� yk2L2ð0;T ;H1ðXÞÞ: ð39Þ

It is straightforward to show that the only modification to the standard formulation of the adjoint analysis

which results from this change in the cost functional is the RHS forcing of the evolution equation for the
associated adjoint field, which now takes the form [cf. (16)]

L�v� ¼ �o2xH
�ðHv� yÞ ¼ �o2xf :
5 We do not consider here the possibility of changing the quantity penalized in the cost functional. An approach in which the cost

functional also includes a suitable norm of the control variable is known as Tikhonov regularization [29] and its connection to the

present framework is discussed in Section 4.5.6.
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Similarly, taking the H�1 norm of the misfit of the measurement y, we define

JH�1ð/Þ ¼ kHv� yk2L2ð0;T ;H�1ðXÞÞ: ð40Þ

The modification of the RHS forcing of the adjoint field in the standard formulation which results from this

change in the cost functional is

L�v� ¼ �o�2
x H�ðHv� yÞ ¼ �o�2

x f :

We remark that this regularization option may not be available when the observations Hv are not a well-

defined function of space (e.g., are defined pointwise in space). Also, if the measurement error g has the form
of white noise, this may render f nondifferentiable and therefore the functional JH1

may not be applicable.

4.3. Modifying the inner product in the adjoint identity

As indicated in (20b), the definition of the adjoint operator may be generalized by using an Hq inner

product rather than the standard L2 inner product. By so doing, we may determine the same gradient of the

same cost functional as found by the standard adjoint framework, but do so via an adjoint system with a

different energy spectrum which makes it more or (preferably) less difficult to compute in a numerical

simulation.

4.3.1. An adjoint derivation with the H 1 inner product

We again proceed to minimize the original cost functional (5) by modeling the system evolution with the

primitive form (2) of the Kuramoto–Sivashinsky system, but now derive the adjoint operator with an H 1

inner product via the identity

hv�;H1

;Lv0iL2ð0;T ;H1ðXÞÞ ¼ hL�;H1

v�;H
1

; v0iL2ð0;T ;H1ðXÞÞ þ b1 ð41Þ

from which it follows that

L�;H1

v�;H
1 ¼ �otv�;H

1 þ 4o4xv
�;H1 þ j o2xv

�;H1

�
� o�2

x ðvo3xv�;H
1Þ
�
;

b1 ¼
" Z 2p

0

oxv�;H
1


 � 
oxv0
!
dx

#t¼T

t¼0

þ
"
� � �
#x¼2p

x¼0

:

ð42Þ

Making use of this adjoint operator, we define an adjoint system with

L�;H1

v�;H
1 ¼ �o�2

x H�ðHv� yÞ ¼ �o�2
x f ; x 2 X; t 2 ½0; T �;

oixv
�;H1ð0; tÞ ¼ oixv

�;H1ð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;

v�;H
1ðx; T Þ ¼ 0; x 2 X:

8><>: ð43Þ

Note that the differential of the cost functional (9) may be written in a form consistent with the new inner

product

J0ð/;/0Þ ¼ �
Z T

0

Z 2p

0

ox o�2
x H�ðHv

�
� yÞ

�
oxv0 dxdt ¼


� o�2

x H�ðHv� yÞ; v0
�
L2ð0;T ;H1ðXÞÞ:

Combining (10) and (43) with (41) and substituting the above expression, we obtain

J0ð/;/0Þ ¼ �
Z 2p

0

o2xv
�;H1

t¼0
/0 dx

			 ¼


� o2xv

�;H1
			
t¼0

;/0
�
L2ðXÞ

: ð44Þ
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Using an L2 inner product to extract the gradient as in (12), we may identify the gradient as

rJ ¼ � o2xv
�;H1
			
t¼0

: ð45Þ

Note that the gradient so defined has zero mean mode and thus lies in the space of feasible /0. An

analogous derivation using an inner product which incorporates derivatives with respect to the time var-

iable (that is ‘‘H 1-in-time’’) is presented in Appendix A.

4.3.2. An adjoint derivation with the H�1 inner product

We again minimize the original cost functional (5) by modeling the system evolution with the primitive

form (2) of the Kuramoto–Sivashinsky system, but now derive the adjoint operator with an H�1 inner
product via the identity

hv�;H�1

;Lv0iL2ð0;T ;H�1ðXÞÞ ¼ hL�;H�1

v�;H
�1

; v0iL2ð0;T ;H�1ðXÞÞ þ b�1 ð46Þ

from which it follows that

L�;H�1

v�;H
�1 ¼ �otv�;H

�1 þ 4o4xv
�;H�1 þ j o2xv

�;H�1
h

� o2xðvo�1
x v�;H

�1Þ
i
;

b�1 ¼
"Z 2p

0

 
o�1
x v�;H

�1

!
o�1
x v0

� �
dx

#t¼T

t¼0

þ
"
� � �
#x¼2p

x¼0

:
ð47Þ

Making use of this adjoint operator, we define an adjoint system with

L�;H�1

v�;H
�1 ¼ �o2xH

�ðHv� yÞ ¼ �o2xf ; x 2 X; t 2 ½0; T �;
oixv

�;H�1ð0; tÞ ¼ oixv
�;H�1ð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;

v�;H
�1ðx; T Þ ¼ 0; x 2 X:

8><>: ð48Þ

Note that the differential of the cost functional (9) may be written in a form consistent with the new inner

product

J0ð/;/0Þ ¼ �
Z T

0

Z 2p

0

o�1
x o2xH

�ðHv
�

� yÞ
�
o�1
x v0 dxdt ¼


� o2xH

�ðHv� yÞ; v0
�
L2ð0;T ;H�1ðXÞÞ:

Combining (10) and (48) with (46) and substituting the above expression, we obtain

J0ð/;/0Þ ¼ �
Z 2p

0

o�2
x v�;H

�1

t¼0
/0 dx

			 ¼


� o�2

x v�;H
�1
			
t¼0

;/0
�
L2ðXÞ

: ð49Þ

Using the L2 inner product (12) to extract the gradient, we may identify the gradient as

rJ ¼ � o�2
x v�;H

�1
			
t¼0

: ð50Þ

4.4. Preconditioning the gradient

As indicated in (20c), the definition of the gradient may be generalized by taking the Hq inner product

(rather than the L2 inner product) when extracting the gradient from the expression of the cost functional

differential. By so doing, we may emphasize the importance of some length scales over others during the

iterative gradient-based optimization procedure, a strategy commonly referred to as preconditioning. Note
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again that (in a convex problem) the minimizer is not changed by such a procedure, though the gradients

are significantly altered. For example, the cost functional differential (12) in the primitive formulation of the

adjoint analysis may be rewritten to incorporate either an H 1 inner product or an H�1 inner product

J0ð/;/0Þ, ðrH1

J;/0ÞH1ðXÞ; J0ð/;/0Þ, ðrH�1

J;/0ÞH�1ðXÞ: ð51Þ

By the definition of these inner products and the relation given in (17), it follows that the H 1 gradient,

rH1
J, and the H�1 gradient, rH�1

J, may be identified as

rH1

J ¼ � o�2
x �v�

			
t¼0

; rH�1

J ¼ � o2xv
�
			
t¼0

: ð52Þ

We may thus extract different gradients from a given adjoint field calculation. Note that the H 1 gradient

emphasizes the large length scales and the H�1 gradient emphasizes the small length scales. Conversely, as

shown in (19), (45), and (50), we may also extract a given gradient from different adjoint field calculations.

We now explore the utility of the weighted linear combination of L2, H 1, and H�1 inner products defined

in (21) for preconditioning the gradient. For clarity, we first consider for this purpose the inner product

ðz1; z2ÞW l1 ;1 which, as discussed previously, represents a linear combination of the L2 and H 1 inner products.

Returning to the standard formulation of the adjoint analysis, but extracting the gradient via this inner

product, we obtain

J0
, ðrW l1 ;1J;/0ÞW l1 ;1 ¼ 1

1þ l21

Z 2p

0

rW l1 ;1J

 �

/0
h

þ l21 oxrW l1 ;1J

 �

ðox/0Þ
i
dx

¼ 1

1þ l21
1
��

� l21o
2
x

�
rW l1 ;1J;/0

�
L2ðXÞ

¼ �v�jt¼0;/
0


 �
L2ðXÞ

: ð53Þ

We may thus identify the desired gradient rW l1 ;1J by solving the 1D Helmholtz equation

1
1þl2

1

1� l21o
2
x

� �
rW l1 ;1J ¼ �v�

			
t¼0

;

rW l1 ;1Jð0Þ ¼ rW l1 ;1Jð2pÞ:

(
ð54Þ

The interpretation of the significance of this expression is clear in Fourier space. Using ½̂��k to denote the

corresponding spatial Fourier coefficient at wavenumber k, it follows that

drW l1 ;1J
h i

k
¼ k21 þ 1

k21
FlpðkÞ b�v� jt¼0

� �
k

; ð55Þ

where FlpðkÞ,k21=ðk21 þ k2Þ is a low-pass filter (see Fig. 2(a)) with a cut-off wavenumber of k1 ¼ 1=l1. A
gradient defined with such a scale-dependent filter de-emphasizes the spatial wavenumbers greater than k1
in the gradient-based optimization process. Note that taking k1 ! 1 recovers the standard L2 gradient
(which weights all wavenumbers equally), whereas taking k1 ! 0 recovers the H 1 gradient. Note also that

the inverse Laplacian is commonly used as a ‘‘smoother’’ in this type of problem. The inverse Helmholtz

operator used to obtain the solution to (54) is a generalization of the inverse Laplacian, which is used to

solve this system in the l1 ! 1 (that is, k1 ! 0) limit. Both such operations may be used to obtain a

‘‘smooth’’ gradient even when the system is defined on a complicated domain in which Fourier analysis is

not possible. Thus, this form of preconditioning has the effect of enforcing smoothness of the control. In

Section 4.5.6 we will show that it can be used to stabilize Tikhonov regularization.

In a similar vein, we can extract the cost functional gradient using the inner product ðz1; z2ÞW 0;l�1 which is
a linear combination of the L2 and H�1 terms. This yields



Fig. 2. Interpretation of the systems (54), (57) and (58) in Fourier space as (a) low-pass, (b) high-pass, and (c) band-pass filters which

de-emphasize certain ranges of wavenumbers in the extraction of the gradient.
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J0
, ðrW 0;l�1J;/0ÞW 0;l�1 ¼

l2�1

1þ l2�1

Z 2p

0

ðrW 0;l�1JÞ/0
�

þ 1

l2�1

o�1
x rW 0;l�1J


 �
o�1
x /0


 ��
dx

¼ l2�1

1þ l2�1

1

��
� 1

l2�1

o�2
x

�
rW 0;l�1J;/0

�
L2ðXÞ

¼


�v�jt¼0;/

0
�
L2ðXÞ

: ð56Þ

We may thus identify the gradient rW 0;l�1J by solving the system

l2�1

1þl2�1

1� 1
l2�1

o�2
x

h i
rW 0;l�1J ¼ �v�

			
t¼0

;

rW 0;l�1Jð0Þ ¼ rW 0;l�1 Jð2pÞ:

(
ð57Þ

Solution of this system has a clear interpretation in Fourier space

drW 0;l�1J
h i

k
¼ k2�1

�
þ 1
�
FhpðkÞ b�v� jt¼0

� �
k

;

where FhpðkÞ,k2=ðk2�1 þ k2Þ is a high-pass filter (see Fig. 2(b)) with a cut-off wavenumber of k�1 ¼ 1=l�1.
Thus defined scale-dependent filters de-emphasize spatial wavenumbers smaller than k�1. Furthermore, we

note that taking k�1 ! 0 recovers the standard L2 gradient, whereas taking k�1 ! 1 recovers the H�1

gradient.

We now consider a weighted linear combination of L2, H 1 and H�1 inner products used to extract the

gradient

J0
, ðrW l1 ;l�1J;/0ÞW l1 ;l�1 ¼

l2�1

1þ l21ð Þ 1þ l2�1ð Þ 1

�0@ � l21l
2
�1

l21 þ l2�1

o2x �
1

l21 þ l2�1

o�2
x

�
rW l1 ;l�1J;/0

1A
L2ðXÞ

¼ �v�jt¼0;/
0


 �
L2ðXÞ

:

We may thus identify the desired gradient rW l1 ;l�1J by solving the system

l2�1

1þl2
1ð Þ 1þl2�1ð Þ 1� l2

1
l2�1

l2
1
þl2�1

o2x � 1
l2
1
þl2�1

o�2
x

h i
rW l1 ;l�1J ¼ �v�

			
t¼0

;

rW l1 ;l�1Jð0Þ ¼ rW l1 ;l�1Jð2pÞ:

8<: ð58Þ

Again, the interpretation of this expression is clear in Fourier space. Taking k1 ¼ 1=l1 and k�1 ¼ 1=l�1, it

follows that
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drW l1 ;l�1J
h i

k
¼

k21 þ k2�1

� �
k21 þ 1
� �

k2�1 þ 1
� �

k41
FbpðkÞ½ b�v� jt¼0�k; ð59Þ

where FbpðkÞ,FlpðkÞ �FhpðkÞ is a band-pass filter (see Fig. 2(c)) formed by the product of the low-pass

filter (with a cut-off wavenumber of k1 ¼ 1=l1) and a high-pass filter (with a cut-off wavenumber of

k�1 ¼ 1=l�1). A band-pass filter of this sort is useful to employ when the optimization process in the

multiscale system is designed to target ‘‘intermediate-scale’’ phenomena.

4.5. Relations between different regularization strategies

We now summarize the relations between the various alternatives in the framing of an adjoint analysis, as

discussed in detail in the example considered above.Wewill first (in Section 4.5.1) show how adjoint operators

corresponding to alternative forms of the evolution equation (Section 4.1) and alternative inner product used

to define the adjoint identity (Section 4.3) are related to the primitive adjoint operator L� determined in

Section 3.Wewill then (in Section 4.5.2) discuss how the associated adjoint fields are related, and tabulate how

any of three cost functional gradients sought may be determined from any of five alternative forms of the

adjoint system. After brief discussions of two interesting special cases (in Sections 4.5.3 and 4.5.4), and an
alternative method of deriving an adjoint analysis (in Section 4.5.5), we conclude the section (in Section 4.5.6)

with a discussion of the relation between Tikhonov regularization and gradient preconditioning.

4.5.1. Relations between the various adjoint operators

Recall first that w ¼ oxv, w0 ¼ oxv0, and thus, by (11) and (25), that oxLz ¼ Moxz. By the identity (14),

which defines L�, it thus follows (assuming all variables are periodic in x) that

hw�;Mw0iL2ð0;T ;L2ðXÞÞ ¼ hw�; oxLv0iL2ð0;T ;L2ðXÞÞ ¼ h�oxw�;Lv0iL2ð0;T ;L2ðXÞÞ

¼ L�ð


� oxw�Þ; v0
�
L2ð0;T ;L2ðXÞÞ

�
Z 2p

0

ðoxw�Þv0 dx
� �t¼T

t¼0

¼ o�1
x L�ðoxw�Þ; oxv0

 �
L2ð0;T ;L2ðXÞÞ

�
Z 2p

0

ðoxw�Þv0 dx
� �t¼T

t¼0

:

Note that the above derivation computes the adjoint of a composition of operators, oxL, and the result is

consistent with a general property of adjoint calculus, namely that ðT1T2Þ� ¼ T�
2T

�
1, where T1 and T2

are two linear operators. Note also that, in general, T�
2T

�
1 6¼ T�

1T
�
2. Noting (26), it follows that

M�z ¼ o�1
x L�ðoxzÞ: ð60Þ

Using a similar approach, it is also straightforward to show that

K�z ¼ oxL
� o�1

x z
� �

: ð61Þ

Similar relationships may be found for the adjoint operators derived using the H 1 and H�1 inner

products. For example, it is easily seen (again assuming all variables are periodic in x) that

hv�;H1

;Lv0iL2ð0;T ;H1ðXÞÞ ¼ oxv�;H
1

; oxLv0
D E

L2ð0;T ;L2ðXÞÞ
¼
D
� o2xv

�;H1

;Lv0
E
L2ð0;T ;L2ðXÞÞ

¼
D
�L� o2xv

�;H1

 �

; v0
E
L2ð0;T ;L2ðXÞÞ

�
Z 2p

0

o2xv
�;H1


 �
v0 dx

� �t¼T

t¼0

¼ o�2
x L� o2xv

�;H1

 �

; v0
D E

L2ð0;T ;H1ðXÞÞ
�

Z 2p

0

o2xv
�;H1


 �
v0 dx

� �t¼T

t¼0

:
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Noting (41), it follows that

L�;H1

z ¼ o�2
x L� o2xz

� �
: ð62Þ

Using a similar approach, it is also straightforward to show that

L�;H�1

z ¼ o2xL
� o�2

x z
� �

: ð63Þ
4.5.2. Relations between the various adjoint fields

Substituting (60) into (28), it is seen that �oxw� satisfies an equivalent set of equations as that defining v�

in (16). We may thus conclude that the primitive adjoint variable v� and the vorticity adjoint variable w� are

related such that v� ¼ �oxw�. By (30), it thus follows that

rJu ¼ � o�1
x v�

		
t¼0

: ð64Þ

The quantity rJu is simply the gradient of the cost functional JuðuÞ in the space of u, where the metric is

defined by the L2 inner product.

We now consider two gradient descent algorithms: one conducted in the space of u and proceeding at

each step in the direction rJu, and the other conducted in the space of / and proceeding at each step in

some direction s/. We then constrain s/ such that the two descent algorithms are equivalent in the sense

that uðnÞ ¼ ox/
ðnÞ for all iterations i. It follows that

uðnÞ ¼ uðn�1Þ � arJu

/ðnÞ ¼ /ðn�1Þ � as/

�
) s/ ¼ o�1

x ðrJuÞ;

that is, the corresponding descent direction in the space of / is given by s/,o�1
x ðrJuÞ. Combining this

with (64) and (52), we obtain

s/ ¼ � o�2
x v�

		
t¼0

¼ rH1

J;

that is, gradient extraction via the L2 inner product in the space of u ¼ ox/ and gradient extraction via

the H 1 inner product in the space of / are equivalent. Using a similar approach, it is straightforward to

show that gradient extraction via the L2 inner product in the space of w ¼ o�1
x / (where w is again re-

stricted to have zero mean) and gradient extraction via the H�1 inner product in the space of / are
equivalent. Similar observations regarding gradient computations before and after a transformation of

the independent variables in a system (in the finite-dimensional setting) were made by Dennis and

Schnabel [35].

Noting the convenient form of the terms b1 and b�1 in (41) and (46), it is seen that the derivation of the

H 1 gradient [see (51)] follows naturally from the adjoint field defined with the H 1 inner product, and that

the H�1 gradient follows naturally from the adjoint field defined with the H�1 inner product

rH1

J ¼ v�;H
1
			
t¼0

; and rH�1

J ¼ v�;H
�1
			
t¼0

:

In order to summarize the pattern that emerges from the application of the various regularization

strategies to the formulation of adjoint-based analyses, we collect some of the significant relations between

the various adjoint operators, the corresponding adjoint fields, and the different gradients in Table 1.

4.5.3. Special case: spatially uniform linearized systems

The relationships between the various alternative forms of adjoint analyses summarized above simplify

greatly when the linearization of the governing evolution equation is spatially uniform (that is, it does not



Table 1

Summary of the principal relations resulting from application of various regularization strategies to the formulation of an adjoint-based optimization algorithm

Section

introduced

Perturbation system Inner product in

adjoint identity

Adjoint system rL2J rH1

J rH�1

J

Section 3 Lv0 ¼ 0,

v0ð0Þ ¼ /
h�; �iL2ð0;T ;L2ðXÞÞ L�v� ¼ f ¼ H�ðHv� yÞ,

v�ðT Þ ¼ 0

v�jt¼0 �o�2
x v�jt¼0 �o2xv

�jt¼0

Section 4.1.1 Mw0 ¼ oxLv0 ¼ 0,

w0ð0Þ ¼ u ¼ ox/
h�; �iL2ð0;T ;L2ðXÞÞ M�w� ¼ o�1

x L�ðoxw�Þ ¼ �o�1
x f ,

w�ðT Þ ¼ 0

�oxw�jt¼0 o�1
x w�jt¼0 o3xw

�jt¼0

Section 4.1.2 Ku0 ¼ o�1
x Lv0 ¼ 0,

u0ð0Þ ¼ w ¼ o�1
x /

h�; �iL2ð0;T ;L2ðXÞÞ K�u� ¼ oxL
�ðo�1

x u�Þ ¼ �oxf ,
u�ðT Þ ¼ 0

�o�1
x u�jt¼0 o�3

x u�jt¼0 oxu�jt¼0

Section 4.3.1 Lv0 ¼ 0,

v0ð0Þ ¼ /
h�; �iL2ð0;T ;H1ðXÞÞ L�;H1

v�;H
1 ¼ o�2

x L� ðo2xv�;H
1 Þ ¼ o�2

x f ,
v�;H

1 ðT Þ ¼ 0

�o2xv
�;H1 jt¼0 v�;H

1 jt¼0 o4xv
�;H1 jt¼0

Section 4.3.2 Lv0 ¼ 0,

v0ð0Þ ¼ /
h�; �iL2ð0;T ;H�1ðXÞÞ L�;H�1

v�;H
�1 ¼ o2x L�ðo�2

x v�;H
�1 Þ ¼ o2xf ,

v�;H
�1 ðT Þ ¼ 0

�o�2
x v�;H

�1 jt¼0 o�4
x v�;H

�1 jt¼0 v�;H
�1 jt¼0
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have spatially varying coefficients). This is the case, for instance, when the system (2) is linearized about the

state v ¼ constant. The perturbation operator for such a case will be denoted L0 and its adjoint L�
0; both

may be obtained from (11) and (16) by setting v ¼ constant. The reason for the simplification in this special
case is that both L0 and L�

0 commute with ox, and thus, by (60)–(62), L�
0 ¼ K�

0 ¼ M�
0 ¼ L�;H1

0 ¼ L�;H�1

0 .

We now consider the system (16), with the operator L� replaced by L�
0. Defining v�1, � o�2

x v� and

noting (52), the gradient of the cost functional J extracted using the H 1 inner product may be written

rH1
JL2 ¼ v�1jt¼0. Thus,

L�
0v

� ¼ L�
0

�
� o2xv

�
1

�
¼ �o2xL

�
0v

�
1 ¼ H�ðHv� yÞ ) L�

0v
�
1 ¼ �o�2

x H�ðHv� yÞ:

By the discussion in Section 4.2, it is seen that v�1 is exactly the adjoint variable used when the cost func-

tional JH�1

is minimized. It follows (in this special case only) that rH1
JL2 ¼ rL2JH�1

and, similarly, that

rH�1
JL2 ¼ rL2JH1

.

4.5.4. Special case: preconditioning the system with the nonlinear term removed

Interesting analytical insights regarding preconditioning can be obtained by considering optimization of

the system (2) with the nonlinear term removed. To simplify calculations, in the reminder of this subsection

we will also assume that the observation operator H has a particularly simple form of an identity operator,
H ¼ Id, and there is no noise in the measurements, i.e., g ¼ 0. This fairly contrived estimation problem

serves simply to illustrate the behavior of a well-preconditioned minimization algorithm. With the above

assumptions, we can analytically solve both the perturbation system (10) and the adjoint system (16) which,

by (19), allows us to express the L2 gradient in closed form as

ð drL2JÞk ¼
/̂act

k

2ð4k4 � jk2Þ ð1� e�2ð4k4�jk2ÞT Þ ¼Âk/̂
act
k ; ð65Þ

where

Âk ¼
1� e�2ð4k4�jk2ÞT

2ð4k4 � jk2Þ

and /act is the actual initial condition that we seek to reconstruct. We see that, since the operator A is

different from identity, the steepest descent direction given by (65) does not point to the minimizer /act, as

shown schematically in Fig. 3(a). However, the form of relation (65) suggests that by extracting the gradient

with an A�1=2 inner product defined as ðz1; z2ÞA�1=2 ¼ ðA�1=2z1;A
�1=2z2ÞL2ðXÞ we obtain the gradient

rA�1=2

J ¼ /act; ð66Þ

which points directly to the minimizer (see Fig. 3(a)). Alternatively, this procedure can be understood as
changing the metric in the space where optimization is performed from the metric induced by the L2 inner

product to the metric induced by the A�1=2 inner product in which the new gradient (66) represents the

steepest descent direction (see Fig. 3(b)). In accordance with the discussion in Section 4.5.3, we notice that

replacing the cost functional (5) with the cost functional JA1=2ð/Þ ¼ 1
2
kHv� yk2L2ð0;T ;A1=2ðXÞÞ and extracting

the gradient using an L2 inner product also yields a descent direction which points directly to the minimizer

/act. Thus, this example shows how modifying the cost functional and changing the gradient extraction

procedure can improve conditioning of an optimization problem. In the present simple case we were able to

obtain a perfectly preconditioned problem (i.e., with all Hessian eigenvalues ki equal). In more realistic
cases when the nonlinear term in (2) is present and only incomplete measurements are available (i.e.,

H 6¼ Id) analytical expressions analogous to (65) are not available; in such cases, the approaches described



Fig. 3. Schematic showing isolines of the cost functional J in the metric induced by: (a) the L2 inner product (the original problem),

and (b) the A�1=2 inner product (the rescaled problem). Descent directions corresponding to gradient extraction performed with

different inner products are also shown.
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in Sections 4.2 and 4.4 appear to be natural strategies for improving the conditioning of the resulting

optimization problem, even if they do not make it perfect.

4.5.5. Optimization derivations based on Lagrange multipliers

It is important to note that the four distinct regularization opportunities considered in this paper are also

available when the evolution equation of the system is incorporated into the optimization problem with a
Lagrange multiplier approach. In such derivations, the cost functional selected is first augmented with a

selected form of the inner product (cf. Section 4.3) of a Lagrange multiplier with a selected form of the

governing equation (cf. Section 4.1). This augmented cost functional is then minimized with respect to both

the chosen control variable and the Lagrange multiplier, often using a gradient-based strategy using a

selected form of an inner product to define the gradient. This setting effectively renders the optimization

problem as ‘‘unconstrained’’, and the Lagrange multiplier itself turns out to be equivalent to the adjoint

field used in the present derivation. In derivations based on such Lagrange multiplier techniques, all four of

the regularization opportunities outlined in this paper are still available and may be selected to achieve the
desired regularizing effect.

4.5.6. Tikhonov regularization in the gradient optimization setting

One common technique to regularize an optimization problem is to modify the cost functional (see

Section 4.2) by adding a term which explicitly penalizes the irregularity of the control /. This approach is

commonly referred to as Tikhonov regularization (see, e.g. [10–12,29]). When applied to the data assimi-

lation problem formulated in Section 3, this results in a new cost functional

Jrð/Þ ¼ Jð/Þ þ ‘2rk/k
2
HrðXÞ; ð67Þ

where ‘r and r > 0 are constants characterizing the degree and form of the regularization. The differential of
this functional is given by

J0
rð/;/

0Þ ¼ J0ð/;/0Þ þ ‘2r

Z 2p

orx/
� �

orx/
0


 �
dx;
0
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from which we may extract the L2 gradient of the functional as

drJr ¼ drJ þ ‘2r k
2r/̂; ð68Þ

where rJ may be determined as in Section 3 and for convenience we adopt the Fourier-space

representation.

The optimization problem which we are attempting to solve may be written as drJrð/Þ ¼ 0. Further, the

gradient-based optimization strategy which we have employed to solve this problem may be interpreted as a

method to find the stationary solution of the following system, which evolves in the artificial ‘‘pseudo-time’’
coordinate s

d/̂
ds ¼ � drJr ¼ � drJ � ‘2r k

2r/̂ on s 2 ð0;1Þ;
/̂ ¼ /̂0 at s ¼ 0:

(
ð69Þ

Effectively, we are attempting to march this artificial system as rapidly as possible to the steady state

characterized by ðd/̂=dsÞ � 0. Time accuracy during this artificial march is not required. This interpreta-
tion facilitates solution of the optimization problem at hand by adopting a variety of different time-dis-

cretization strategies applied to (69). Due to complexity involved in its evaluation (employing both forward

and adjoint simulations), the term drJ must be calculated explicitly. However, the term ‘2r k
2r/̂ is easily

handled with a variety of either implicit or explicit treatments. This leads to many possible forms of the

optimization algorithm, including:

1. explicit (Euler) treatment of the penalty term

/̂ðnþ1Þ ¼ /̂ðnÞ � Dsð drJrÞ
ðnÞ ¼ �Dsð drJÞðnÞ þ 1

�
� Ds‘2r k

2r
�
/̂ðnÞ;

2. implicit (Cranck–Nicholson) treatment of the penalty term

/̂ðnþ1Þ ¼ /̂ðnÞ � Ds

�
ð drJÞðnÞ þ ‘2r k

2r /̂ðnÞ



þ /̂ðnþ1Þ
��

2

�

¼ � Ds

1þ 1
2
Ds‘2r k

2r
ð drJÞðnÞ þ

"
1� 1

2
Ds‘2r k

2r

1þ 1
2
Ds‘2r k

2r

#
/̂ðnÞ ¼ /̂ðnÞ � Ds

1þ 1
2
Ds‘2r k

2r
ð drJrÞ

ðnÞ
;

where Ds is some discrete stepsize in the pseudo-time coordinate s. Taking Ds ¼ constant results in what is

sometimes referred to as Landweber iteration (see, e.g. [10]), and is often the approach most amenable to

numerical analysis. In practice, however, it is usually more efficient to adjust the stepsize Ds at every it-

eration in order to minimize Jr. Note that the explicit method #1 suffers from a stability constraint

Ds6 2‘�2
r k�2r

max which is reminiscent of a CFL condition and, if violated, will result in an unstable explicit

march and amplification of the small scales of the field /̂. In practice, method #1 is therefore generally not

preferred. On the other hand, no such restriction applies to method #2. Furthermore, we observe that the
semi-implicit method #2 may in fact be regarded as an explicit approach utilizing the cost functional Jrð/Þ
and a smoothed gradient extracted with the inner product ðz1; z2ÞL2ðXÞ þ ð‘2rDs=2Þðz1; z2ÞHrðXÞ (see Section

4.4). We thus see that adoption of a suitable gradient extraction strategy in the context of Tikhonov

regularization may help bypass restrictive limitations on the length of the step Ds. As described above, the

semi-implicit variant of Tikhonov regularization may in fact be viewed as a special case of the regulari-

zation framework proposed in the present study, incorporating appropriate forms of the cost functional

and the inner product used to extract the gradient in an explicit optimization procedure.
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5. Computational examples

In this section, we provide a few computational examples to illustrate how the different brackets used in
the framing of an adjoint analysis may be used to affect the computational accuracy and the rate of

convergence of a numerical optimization algorithm. Based on this analysis, we then propose a family of

promising multiscale preconditioning approaches that improve the convergence of the state reconstruction

problem highlighted in the previous two sections. Note that the present computational study is by no means

meant to be exhaustive, but simply to indicate the utility of pursuing the various regularization opportu-

nities outlined previously. Many interesting related questions are left to be characterized numerically in

future work.

In the PDE setting, the descent direction determined via an adjoint analysis depends solely on the choice
of the norm in the cost function (see Section 4.2) and the inner product used to extract the gradient (see

Section 4.4). The choice of the form of the evolution equation (see Section 4.1) and the inner product used

to define the adjoint identity (see Section 4.3) affect only how the desired gradient of the cost functional

selected is determined.

The specific problem considered in the data assimilation results reported here is obtained by setting

j ¼ 4000 in (2). This rather high value for j insures the system under consideration exhibits chaotic

multiscale dynamics. The peak of the energy spectrum of the system is generally between k ¼ 20 and k ¼ 25

and, for higher wavenumbers, the spectrum rolls off rapidly after that. Around 22–23 peaks may usually be
counted in the domain X at any given time. A typical numerical simulation of this system is shown in Fig. 4.

The initial condition (selected on the chaotic attractor of the system) which we will seek to reconstruct,

based solely on measurements of the system on ½0; T �, is that shown in Fig. 4(a). The length of the opti-

mization horizon T used, which corresponds to about 300 time steps, is sufficient to demonstrate significant
Fig. 4. Dynamics of the Kuramoto–Sivashinsky system for j ¼ 4000: (a) initial condition vð0Þ ¼ / (chosen on the chaotic attractor of

the system), and (b) spatio-temporal evolution of the system (visualized are the zero (solid), several positive (dotted) and negative

(dashed) isocontours of v in the space–time plane).
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dynamics of the chaotic system, as illustrated in Fig. 4(b). The observation operator H selected represents

observation of the real part of the first 50 Fourier coefficients (i.e., the first 50 coefficients of the cosine

decomposition) of the primitive variable v [that is, Kr ¼ f1; . . . ; 50g in (7)]. We will assume for the purpose
of this discussion that our measurements are not corrupted by noise [that is, g ¼ 0 in (5)]. The initial guess

for the initial conditions, /ð0Þ, will be taken to be zero in all optimizations attempted. These several choices

make the (admittedly contrived) state reconstruction problem studied here difficult, yet still solvable in a

reasonable number of iterations. This problem thus provides a tractable 1D multiscale chaotic testbed

which is useful in quantifying the effectiveness of the various regularization strategies proposed. Extension

of these strategies from the present 1D model problem to 2D and 3D systems of engineering relevance are

straightforward – a few such extensions of particular interest are discussed briefly in Section 6.

In the present work, the state and adjoint systems are both solved in the well-resolved setting (on 1024
grid points) using a dealiased pseudo-spectral method. Time advancement is performed using an RK3

scheme on the nonlinear term and a generalized trapezoidal method with h ¼ 5=8 (see [36]) on the linear

terms. Gradient iterations are carried out using the Polak–Ribiere version of the Conjugate Gradient (CG)

method (see, e.g. [34]). The ‘‘momentum’’ term in the CG method is calculated using a standard L2 inner

product, and is reset to zero every 20 iterations. Minimization in the descent direction is performed using

Brendt�s method [37] at each iteration. A gradient method has been selected for the optimization rather

than a quasi-Newton method (which is an attractive alternative) in order to provide a simple environment

for comparison of the different adjoint formulations.

5.1. Numerical characterization of the adjoint systems obtained with alternative formulations

In Section 4.5.2 we concluded that any given cost functional gradient can be extracted from any adjoint

field calculation. In the present section we characterize certain numerical properties of the different adjoint

operators derived in Sections 4.1 and 4.3. In Fig. 5 we compare the energy spectra of the adjoint variable at

t ¼ 0 (i.e., after the backward-time adjoint march) at the 100th iteration obtained with adjoint systems

corresponding to different forms of the evolution equation and different forms of the inner product em-
ployed in the adjoint identity. The energy spectrum is defined as EðkÞ ¼ ẑk � conjðẑkÞ, where ẑk is the Fourier
transform of an appropriate adjoint variable and conjðẑkÞ denotes the complex conjugate of ẑk. For
Fig. 5. Energy spectra of (thick solid) a typical solution of the Kuramoto–Sivashinsky equation (2) and of five different definitions of

the corresponding adjoint system: (long dashed) v�;H
�1
, as defined in (48), (short dashed) u�, as defined in (36), (thin solid) v�, as defined

in (16), (dotted) w�, as defined in (28), and (dot-dashed) v�;H
1
, as defined in (43).
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comparison, we also show the energy spectrum of a typical solution vðtÞ of the Kuramoto–Sivashinsky

system (2) on the chaotic attractor. Note that the decay rates of the spectra are consistent with the relations

shown in columns 5–7 of Table 1. Specifically, we see that there is a difference of the factor k2 in the roll-off
of the spectra between every two consecutive variables v�;H

�1
, u�, v�, w�, and v�;H

1
. Despite this fact, however,

close inspection of the systems (48), (36), (16), (28), and (43) shows that discretization of the corresponding

adjoint variables with a given cut-off wavenumber kmax retains in the resolved modes precisely the same

information in each case. This can be visualized by drawing a vertical line at k ¼ kmax in Fig. 5 and retaining

the modes to the left of this line only. The resolved modes carry the same information, but have different

weights in the Fourier-space representation. Thus, extraction of a given cost functional gradient from

different adjoint variables may be regarded as readjusting these different weights so that they are consistent

with the definition of the gradient sought.
Regardless of the specific approximation scheme employed, a spatial discretization L� of the primitive

adjoint operator L� can be represented as

L�v� ¼ � d

dt
v� þ ðBþDÞv�; ð70Þ

where v� is the corresponding discretization of the adjoint variable v�, and B and D are matrices repre-
senting discretizations of the operators �jvox and 4o4x þ jo2x , respectively. Defining now a transformation

matrix S such that

½S�ij ¼
i; i ¼ j
0; i 6¼ j

�
; i; j ¼ 1; . . . ; kmax;

we can express the spatial discretizations of the operators L�;H�1

, K�, M�, and L�;H1

as follows:

L�;H�1

v�;H
�1 ¼ � d

dt
v�;H

�1 þ ðS2BS�2 þDÞv�;H�1

; ð71aÞ
K�u� ¼ � d

dt
u� þ ðSBS�1 þDÞu�; ð71bÞ
M�w� ¼ � d

dt
w� þ ðS�1

BSþDÞw�; ð71cÞ
L�;H1

v�;H
1 ¼ � d

dt
v�;H

1 þ ðS�2BS2 þDÞv�;H1

: ð71dÞ

We note that, for any arbitrary square matrix T, T and S�nTSn, n 2 . . . ;�2;�1; 0; 1; 2; . . ., have exactly
the same eigenvalues. Relating this fact to explicit time-integration of systems (70) and (71a)–(71d), we

observe that the value of the CFL number is the same for all of these systems. This allows us to conclude
that truncation errors related to spatial discretization and stability restrictions concerning explicit time-

integration affect in the same way the adjoint systems obtained based on different forms of the evolution

equation and different inner products used to define the adjoint identity.

On the other hand, each of the adjoint systems (48), (36), (16), (28), and (43) will be to a different degree

prone to numerical precision (round-off) errors. This fact can be appreciated by drawing in Fig. 5 two

horizontal lines: one for a large value, and the other for a small value of the ordinate, and retaining Fourier

modes only with amplitudes between the values corresponding to the two lines. We observe that, depending

on the choice of the lower and upper limit, the resulting loss of information will be different for the different
adjoint variables as a result of the finite-precision arithmetic of the numerical calculation.
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5.2. Optimization

As defined in (40), (5), (39), the three cost functionals JH�1

, J, and JH1

effectively measure the misfit of
the model with the observed measurements with particular focus, respectively, on the large length scales, on

all length scales, and on the small length scales. By large and small length-scales we mean the ranges of

length-scales approaching the largest and the smallest length-scales resolved in the discrete representation

of the system. In the present study the largest length-scale, equal to the size of the computational domain, is

2p, whereas the smallest resolved length-scale is approximately 10�3. In the discussion of the computational

results, by large scales we will mean length-scales from the interval ½100; 2p�, by intermediate length-scales

from the interval ½10�2; 100�, and by small length-scales from the interval ½10�3; 10�2�. In this section, we will

consider optimizations based on the minimization of all three of these cost functionals. To perform the
optimizations, we will consider gradients extracted using the W l1;1 and W 0;l�1 inner products, as defined in

(53) and (56), for various values of l1 and l�1. Recall that the W l1;1 inner product reduces to the L2 inner

product in the l1 ! 0 limit, and to the H 1 inner product in the l1 ! 1 limit. To simplify the notation, the

different cases considered in this section will be referred to using a shorthand notation fz1; z2g to charac-

terize the spatial component of the brackets W1 and W3. For example, fL2; L2g will be used denote the

standard (L2-based) formulation discussed in Section 3, whereas fH 1;W l1;1g will be used to denote the

formulation derived from the H 1 cost functional (39) together with the W l1;1 inner product used to define

the gradient.
For the simulations presented in this section, to bypass further consideration of the numerical resolution

issues discussed in the previous section, we will continue to use fine resolution, discretizing the system on

1024 grid points (that is, 684 degrees of freedom after dealiasing). Thus, as summarized in Table 1, we may

determine the gradient sought via appropriate use of any of these definitions of the adjoint operator. For

simplicity, all calculations discussed in the present section are performed using just the primitive adjoint Eq.

(15), which is based on the primitive form of the Kuramoto–Sivashinsky system and the standard L2 inner

product for adjoint definition. This allows us to focus our attention in this section on the effects of mod-

ifying the brackets W1 and W3.

5.2.1. Analysis after one iteration

We first analyze the effect of the choice of W1 and W3 after just one iteration. The reason for focusing on

the first iteration is that we intend to compare different gradients, and such a comparison is meaningful only

when the state at which they are evaluated is the same for all gradients. The progress made towards the

minimum on the large length scales, over all length scales, and on the small length scales will be assessed

based on the reduction of JH�1

, J, and JH1

, respectively, regardless of which cost functional is actually

minimized in the case considered.
We begin by comparing the shapes of the gradients themselves in the case fL2;W l1;1g for different values

of l1 (Fig. 6). Note that the various choices for l1 which have been used result in substantially different

gradients, and that, as l1 increases, the gradients rW l1 ;1J become significantly smoother (that is, as l1
increases, the energy in the gradient field rolls off more rapidly with wavenumber). However, it is difficult to

determine visually which of the gradients best captures the actual initial condition.

In Fig. 7, we present values of the functionals JH�1

, J, and JH1

obtained after the first iteration in all

the cases considered as a function of the lengths l1 and l�1 which parameterize the inner products used in

gradient extraction. Note in all the cases that the three functionals vary smoothly with l1 and l�1 revealing
similar trends. The top plot in Fig. 7(a) illustrates the effect on JH�1

when a control strategy is used which

targets JH�1

. Similarly, the bottom plot in Fig. 7(c) illustrates the effect on JH1

when a control strategy is

used which targets JH1

. Note in both cases that, after a single iteration, the functional targeted by the

control algorithm is reduced substantially. In Fig. 7(a) we see that optimization strategies targeting large

scales may also work well at intermediate and small scales, provided the W 0;l�1 inner product with a suitable



Fig. 6. (a) The shape of the gradients rW l1 ;1J in physical space, normalized by their peak value on the subinterval shown. (b) The

energy contained in the gradient field as a function of spatial wavenumber. The cases considered are: (dashed) l1 ¼ 0:5, (dot-dashed)

l1 ¼ 0:1, and (dotted) l1 ¼ 0. For comparison, the solid lines depict the actual initial condition sought.
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value of l�1 is selected for gradient extraction. Likewise, strategies targeting all scales (Fig. 7(b)) work best
in conjunction with the inner product W l1;1 selected for gradient extraction. On the contrary, strategies

targeting small scales (Fig. 7(c)) reveal a rather weak dependence on the form of the inner product used for

gradient extraction and, moreover, their performance is degraded on the larger scales. We note that when

either J and JH�1

is minimized, a clever choice of an inner product for gradient extraction can render an

optimization strategy effective also on length scales other than those explicitly targeted by the cost func-

tional. We thus see that, when posing an optimization problem of this sort, it is useful to select appropriate

definitions of both the cost functional (by appropriate selection of W1) and its gradient (by appropriate

selection of W3) in order to tune the performance on the length scales of interest.

5.2.2. Analysis after many iterations

We now analyze the effect of the choice of W1 and W3 after 100 iterations are performed. Several cases

were run; for brevity, the following cases of particular interest are reported here:

(1) fH�1; L2g,
(2) fH�1;W 0;l�1g with l�1 ¼ 0:2,
(3) fH�1;W 0;l�1g with lðnÞ�1 ¼ lð0Þ�1f

n, where lð0Þ�1 ¼ 0:2 and f ¼ 0:95,
(4) fH�1;W 0;l�1g with lðnÞ�1 ¼ lð0Þ�1f

n, where lð0Þ�1 ¼ 0:2 and f ¼ 1:05,
(5) fL2; L2g,
(6) fL2;W l1;1g with l1 ¼ 0:1,



Fig. 7. Dependence of the functionalsJH�1

,J, andJH1

on the lengths l1 and l�1 parameterizing the inner products W l1 ;1 (circles) and

W 0;l�1 (diamonds) used to extract the gradients during the first iteration. In all figures, the vertical axis is normalized by the value of the

corresponding cost functional for the initial guess /ð0Þ (that is, before the first iteration). Thus, a cost functional value of 0.6 in the

above figures implies a 40% reduction of the corresponding cost functional after one iteration. (a) Minimizing JH�1

; (b) minimizingJ;

(c) minimizing JH1

.
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(7) fL2;W l1;1g with lðnÞ1 ¼ lð0Þ1 fn, where lð0Þ1 ¼ 0:1 and f ¼ 2=3,
(8) fL2;W l1;1g with lðnÞ1 ¼ lð0Þ1 fn, where lð0Þ1 ¼ 0:1 and f ¼ 3=2.

The cases #3,4,7,8 will be referred to as multiscale preconditioning approaches. In these strategies gra-

dients are extracted with the inner products W l1;1 and W 0;l�1 in which l1 and l�1 vary monotonically with
the iteration number; cases of l1 and l�1 both decreasing and increasing are considered. Gentle variation of

lðnÞ1 and lðnÞ�1 thus provides a convenient ‘‘knob’’ controlling the cut-off length scales as a function of the

iteration number n. This approach may be regarded as a multiscale version of the variable preconditioning

method discussed in the context of finite-dimensional linear systems by Axelsson [38]. Appropriate values of

lð0Þ1 , lð0Þ�1 and f for the present system were found by trial and error.

Note that, when computing the descent direction at every iteration of the present conjugate gradient

descent algorithm, we need to evaluate a ‘‘momentum’’ term formed by a ratio of inner products of the

recently calculated gradients. Though there is some discussion of this issue in the literature, there appears to
be no commonly accepted strategy for selecting the inner product to use to calculate the momentum term

when a variable preconditioning strategy is employed. We have used simple L2 inner products to evaluate

the momentum term in the present work. Other strategies were also tried, including the use of inner

products in this calculation that varied from one iteration to the next. Unfortunately, none of these

strategies were found to significantly accelerate convergence.

In Fig. 8 we show the reduction of the three metrics JH�1

, J, and JH1

in the eight cases mentioned

above. We note that when the cost functional J is minimized, the multiscale approach starting with a

‘‘good’’ value of l1 and then progressively decreasing it to zero gives better results than standard optimi-
Fig. 8. Variation of the functionals JH�1

, J, and JH1

as a function of the iteration count for reconstructions based on minimizing

JH�1

(a) and J (b), and using the following inner products: (a) (solid) L2, (dash-dotted) W 0;l�1 with l�1 fixed, (dotted) W 0;l�1 with l�1

decreasing to zero, and (dashed) W 0;l�1 with l�1 increasing; (b) (solid) L2, (dash-dotted) W l1 ;1 with l1 fixed, (dotted) W l1 ;1 with l1
decreasing to zero, and (dashed) W l1 ;1 with l1 increasing.
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zation employing L2 gradients. When the cost functional JH�1

is minimized, all approaches based on W 0;l�1

gradients perform better than the standard strategy using L2 gradients. As expected, minimizing JH�1

in-

stead of J results in a better convergence on large scales, while compromising slightly convergence on
intermediate scales.

Some theoretical insights regarding the impact of the norm selected in the cost functional and the inner

product used to extract the gradient on convergence of a gradient minimization algorithm applied to an

optimization problem governed by a linear operator such as L can be gleaned by examining construction

of the corresponding Krylov spaces. We consider a general case fHm;Hng, where m and n are the differ-

entiation orders in the definition of the cost functional and in the inner product used for gradient ex-

traction. After p iterations (starting with zero initial guess) the cost functional is minimized over the

following Krylov space:

Km;nð0; pÞ ¼span o�2n
x ðL�Þ�1

o2mx H�Hy; o�2n
x ðL�Þ�1

o2mx ðLÞ�1
o�2n
x ðL�Þ�1

o2mx H�Hy; . . . ;

(
Yp
k¼1

o�2n
x ðL�Þ�1

o2mx ðLÞ�1
h ik

o�2n
x ðL�Þ�1

o2mx H�Hy

)
:

We see that the structure of the Krylov spaces Km;nð0; pÞ, in which the pth approximation of the minimizer is

constructed, depends in an intricate way on an interplay of the operators o�2n
x and o2mx with the evolution

operator L and its adjoint L�. In particular, we note that in the special case of spatially uniform system

considered in Section 4.5.3, the differential operators commute with both ðLÞ�1
and ðL�Þ�1

and therefore

the case fHm;Hng is equivalent to fL2;Hn�mg.
6. Extensions

In Section 4 we presented a comprehensive picture of different regularization strategies applied to a

simple model system. Since the ultimate goal is to apply these methods to real systems of physical and

engineering interest, such as the Navier–Stokes equation in a bounded domain, below we show that such

generalization is in fact straightforward. One significant difference is the more complicated structure of the

governing equation and its adjoint when working in higher spatial dimensions. Another significant dif-

ference is related to the fact that various terms obtained from the integration by parts do not vanish on the
solid boundaries. In order to highlight some of the issues, below we will outline how applying selected

regularization options modifies the formulation of an adjoint-based optimization of the Navier–Stokes

system in a periodic domain (Section 6.1) and the Kuramoto–Sivashinsky equation in a bounded domain

(Section 6.2). Due to space limitations, we restrict ourselves to presenting only the numerical framework

and do not show any computational results. For the same reason, the case of the Navier–Stokes system in a

bounded domain is also deferred to a forthcoming paper.

6.1. Controlling a 3D Navier–Stokes system

We consider here a Navier–Stokes system

ov
ot þ ðv � $Þvþ $p � lDv ¼ /; in X� ð0; T Þ;
$ � v ¼ 0; in X� ð0; T Þ;
v ¼ v0; at t ¼ 0;
v periodic in x ; x ; x ;

8>><>>: ð72Þ
1 2 3
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where v is the velocity, p is the pressure, l is the viscosity, and / is an externally applied body force

representing the control. The system is supplied with the initial condition v0 and its evolution takes place in

a domain X ¼ ½0; 2p�3 periodic in all three spatial dimensions. The domains X1, X2 and X3 (see Section 2) all
coincide with X, while the system evolution, the control, and the cost function are all defined on X� ½0; T �.
Since we now deal with vector quantities depending on three spatial variables, and the control now also

depends on time, the brackets (20a)–(20c) used to frame the adjoint analysis need to be suitably redefined

kzk2L2ð0;T ;HqðXÞÞ,

Z T

0

Z
X

oqzi
oxqj

oqzi
oxqj

dXdt; ð73aÞ
hy; ziL2ð0;T ;HqðXÞÞ,

Z T

0

Z
X

oqyi
oxqj

oqzi
oxqj

dXdt; ð73bÞ
ðy; zÞL2ð0;T ;HqðXÞÞ,

Z T

0

Z
X

oqyi
oxqj

oqzi
oxqj

dXdt; ð73cÞ

where repeated indices imply summation and we will restrict our attention to the cases with qP 0. By

analogy with (21), we can define inner products as a weighted linear combination of terms of the form (73c)

with different values of q, e.g.

ðy; zÞL2ð0;T ;W l1 ;1Þ,
1

1þ l21
ðy; zÞL2ð0;T ;L2ðXÞÞ
h

þ l21ðy; zÞL2ð0;T ;H1ðXÞÞ

i
: ð74Þ

In order to emphasize the differences with respect to the standard approach, we analyze here the problem

studied initially in the seminal paper of Abergel and Temam [39], i.e., enstrophy minimization with control

in the form of the body force applied to the 3D Navier–Stokes system in a periodic domain. Consequently,
we attempt to minimize the functional 6

Jnsð/Þ,
1

2
k$� vk2L2ð0;T ;L2ðXÞÞ: ð75Þ

The classical formulation is obtained by following the methodology of Section 3 (see also [39]). The

differential of the cost functional is

J0
nsð/;/

0Þ ¼
Z T

0

Z
X
ð$� vÞ � ð$� v0ÞdXdt ¼ �

Z T

0

Z
X
Dv � v0 dXdt; ð76Þ

where /0 is a perturbation of the control and v0ð/;/0Þ solves the system

N
v0

p0

� �
¼ /0

0

� �
in X� ð0; T Þ;

v0 ¼ 0 at t ¼ 0;
v0 periodic in x1; x2; x3;

8>><>>: ð77Þ

with the linear operator
6 For the sake of simplicity we skip here the penalty on the control /. As noted in the numerical experiments of [5], the removal of

this control penalty in nonlinear Navier–Stokes control problems apparently leads to bounded control feedback at least in a subset of

well-defined problems.
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N
v0

p0

� �
¼

ov0

ot þ ðv � $Þv0 þ ðv0 � $Þv� lDv0 þ $p0

�$ � v0

" #
: ð78Þ

We now define an adjoint operator with the identity

N
v0

p0

� �
;

v�

p�

� �� �
L2ð0;T ;L2ðXÞÞ

¼ v0

p0

� �
;N� v�

p�

� �� �
L2ð0;T ;L2ðXÞÞ

þ bns; ð79Þ

where the inner product of vectors is defined in (73b). Consequently, the adjoint operator has the

form

N� v�

p�

� �
¼ � ov�

ot � v � ½$v� þ ð$v�ÞT� � lDv� þ $p�

�$ � v�
� �

; ð80Þ

and the adjoint system may be defined as

N� v�

p�

� �
¼ �Dv

0

� �
in X� ð0; T Þ;

v� ¼ 0 at t ¼ T ;
v� periodic in x1; x2; x3:

8>><>>: ð81Þ

In such a case we obtain bns ¼ 0 and the relations (79), (77) and (81) can be used to re-express J0
nsð/;/

0Þ as

J0
nsð/;/

0Þ ¼
Z T

0

Z
X
/0 � v� dXdt ¼ $L2ð0;T ;L2ðXÞÞJns;/

0

 �

L2ð0;T ;L2ðXÞÞ
;

which yields the L2 functional gradient

$L2ð0;T ;L2ðXÞÞJns ¼ v�: ð82Þ

In the vein of Sections 4.3 and 4.4, below we examine how this derivation is modified when different forms

of the inner product defining the adjoint identity and the gradient extraction is selected.

6.1.1. Adjoint derivation with the H 1 inner product

We now derive the adjoint operator using the identity

N
v0

p0

� �
;

v�;H
1

p�;H
1

� �� �
L2ð0;T ;H1ðXÞÞ

¼ v0

p0

� �
;N�;H1 v�;H

1

p�;H
1

� �� �
L2ð0;T ;H1ðXÞÞ

þ bns;1; ð83Þ

which yields the new adjoint operator

N�;H1 v�;H
1

p�;H
1

� �
¼ � ov�;H

1

ot � D�1
0 v � D $v�;H

1 þ ð$v�;H1ÞT
h in o

� lDv�;H
1 þ $p�;H

1

�$ � v�;H1

" #
; ð84Þ

where D�1
0 is the inverse Laplace operator associated with homogeneous Dirichlet boundary conditions. We

define the new adjoint system as

N�;H1 v�;H
1

p�;H
1

� �
¼ D�1

0 Dv
0

� �
in X� ð0; T Þ;

v�;H
1 ¼ 0 at t ¼ T ;

v�;H
1
periodic in x1; x2; x3;

8>><>>: ð85Þ
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from which we obtain bns;1 ¼ 0 and

J0
nsð/;/

0Þ ¼
Z T

0

Z
X

ov�;H
1

i

oxj

o/0
i

oxj
dXdt:

Identifying this expression with either ð$L2ð0;T ;L2ðXÞÞJns;/
0ÞL2ð0;T ;L2ðXÞÞ or ð$

L2ð0;T ;H1ðXÞÞJns;/
0ÞL2ð0;T ;H1ðXÞÞ allows

us to extract the corresponding gradients as

$L2ð0;T ;L2ðXÞÞJ ¼ �Dv�;H
1

; $L2ð0;T ;H1ðXÞÞJ ¼ v�;H
1

:

6.1.2. Preconditioning the gradient

We can extract preconditioned gradients by identifying the differential of the cost functional J0
nsð/;/

0Þ
with an alternative form of the inner product, such as that defined in (74). As in Section 4.4, the new

gradient can be obtained for all t 2 ½0; T � as a solution of the Helmholtz equation

1
1þl2

1

½1� D�$L2ð0;T ;W l1 ;1ÞJns ¼ v�;

$L2ð0;T ;W l1 ;1ÞJns;
o
on$

L2ð0;T ;W l1 ;1ÞJns periodic in x1; x2; x3:

(
ð86Þ

We remark that we obtain by this approach the same properties with respect to scale-dependent filtering

as discussed in Section 4.4. Since in the present case the control / is also a function of time, the definition of

the inner product used to extract the gradient can also be generalized by incorporating derivatives with

respect to time. Using such an inner product will result in smoothing the gradient in the time domain. This

approach is discussed further in Section 6.2.4.

6.2. Controlling a Kuramoto–Sivashinsky system in a bounded domain

We now proceed to investigate how the presence of solid boundaries affects the regularization strategies

developed in Section 4. We first briefly review the standard formulation and then show how it is modified

when each of the four regularization options is applied in turn. For this purpose we consider the system (2)

in a bounded domain X ¼ ½0; 2p� (see, e.g. [40])

otvþ 4o4xvþ j o2xvþ voxv
� �

¼ 0; x 2 X; t 2 ½0; T �;
vð0; tÞ ¼ vð2p; tÞ ¼ 0; t 2 ½0; T �;
oxvð0; tÞ ¼ /; oxvð2p; tÞ ¼ 0; t 2 ½0; T �;
vðx; 0Þ ¼ v0; x 2 X;

8>><>>: ð87Þ

where a time-dependent control / is applied on one boundary to regulate a quantity defined on the

opposite boundary (note that for consistency with the initial data we must have oxv0jx¼0 ¼ /jt¼0). Con-

sequently, the norm and the inner product needed to formulate the adjoint analysis are redefined as

follows:

kzk2Hpð0;T Þ,

Z T

0

opt z
� �2

dt; ð88aÞ
ðz1; z2ÞHpð0;T Þ,

Z T

0

opt z1
� �

opt z2
� �

dx: ð88bÞ

(Note that discussion of incorporating time derivatives into the inner product defining the adjoint identity is

deferred to Appendix A.) We now select the cost functional as
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Jbð/Þ ¼
1

2
o2xv
		
x¼2p

��� ���2
L2ð0;T Þ

: ð89Þ

In the present problem we have therefore the following relations between the spatial domains of interest:
X1 ¼ f2pg, X2 ¼ X and X3 ¼ f0g. Both the cost functional and the control are defined on ½0; T �, whereas
the system evolution again takes place over X� ½0; T �. The differential of the cost functional is

J0ð/;/0Þ ¼
Z T

0

o2xv
� �

o2xv
0� �� �

x¼2p
dt; ð90Þ

where v0 is the solution of the system

Lv0 ¼ 0; x 2 X; t 2 ½0; T �;
v0ð0; tÞ ¼ v0ð2p; tÞ ¼ 0; t 2 ½0; T �;
oxv0ð0; tÞ ¼ /0; oxv0ð2p; tÞ ¼ 0; t 2 ½0; T �;
v0ðx; 0Þ ¼ 0; x 2 X;

8>><>>: ð91Þ

with the operator L defined as in (11). Note that consistency between the initial and boundary conditions

requires that /0ð0Þ ¼ 0. The adjoint operator L� is introduced using the identity (14) and is given by (15).

Defining the adjoint state v� such that

L�v� ¼ 0; x 2 X; t 2 ½0; T �;
v�ð0; tÞ ¼ v�ð2p; tÞ ¼ 0; t 2 ½0; T �;
oxv�ð0; tÞ ¼ 0; oxv�ð2p; tÞ ¼ o2xvð2p; tÞ; t 2 ½0; T �;
v�ðx; T Þ ¼ 0; x 2 X;

8>><>>: ð92Þ

we can use (14), (91), and (92) to re-express the differential of the cost functional as

J0
bð/;/

0Þ ¼ �
Z T

0

o2xv
�		

x¼0


 �
/0 dt ¼ rL2ð0;T ÞJb;/

0

 �

L2ð0;T Þ

from which we obtain the L2 gradient

rL2ð0;T ÞJb ¼ �o2xv
�ð0; tÞ: ð93Þ
6.2.1. Adjoint derivation based on the vorticity formulation

We now proceed to minimize the original cost functional (89) by modeling the system evolution with the

vorticity form of the Kuramoto–Sivashinsky system 7

otwþ 4o4xwþ j o2xwþ w2 þ o�1
x woxw

� �
¼ 0; x 2 X; t 2 ½0; T �;

vð0; tÞ ¼ vð2p; tÞ ¼ 0; t 2 ½0; T �;
wð0; tÞ ¼ /;wð2p; tÞ ¼ 0; t 2 ½0; T �;
wðx; 0Þ ¼ w0; x 2 X:

8>><>>: ð94Þ

The cost functional can now be rewritten in the form

Jbð/Þ ¼
1

2
koxwjx¼2pk

2

L2ð0;T Þ ð95Þ
7 Note that, similarly to the vorticity form of the Navier–Stokes system in a bounded domain, the boundary conditions of the

vorticity system (94) also involve the primitive variable v.
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and its differential can be expressed as

J0ð/;/0Þ ¼
Z T

0

ðoxwÞðoxw0Þ
� �

x¼2p
dt; ð96Þ

where w0 is the solution of the system

Mw0 ¼ 0; x 2 X; t 2 ½0; T �;
v0ð0; tÞ ¼ v0ð2p; tÞ ¼ 0; t 2 ½0; T �;
w0ð0; tÞ ¼ /0;w0ð2p; tÞ ¼ 0; t 2 ½0; T �;
w0ðx; 0Þ ¼ 0; x 2 X;

8>><>>: ð97Þ

where the operator M is defined as in (25). The adjoint operator is introduced with the bracket (26) and is
given by (27). Defining the adjoint state w� such that

M�w� ¼ 0; x 2 X; t 2 ½0; T �;
oxw�ð0; tÞ ¼ oxw�ð2p; tÞ ¼ 0; t 2 ½0; T �;
o2xw

�ð0; tÞ ¼ 0; o2xw
�ð2p; tÞ ¼ oxwð2p; tÞ; t 2 ½0; T �;

w�ðx; T Þ ¼ 0; x 2 X;

8>><>>: ð98Þ

we can now use (26), (97), and (98) to re-express the cost functional differential as

J0
bð/;/

0Þ ¼ �
Z T

0

o3xw
�		

x¼0


 �
/0 dt ¼ rL2ð0;T ÞJb;/

0

 �

L2ð0;T Þ

from which we obtain the L2 gradient

rL2ð0;T ÞJb ¼ �o3xw
�ð0; tÞ:
6.2.2. Targeting the cost functional

Since the regulated quantity is now a function of time only, an alternative, targeted, cost functional may
be selected as, for instance,

JH1

b ð/Þ ¼ 1

2
o2xv
		
x¼2p

��� ���2
H1ð0;T Þ

; ð99Þ

in which case the differential becomes

J0H1

b ð/;/0Þ ¼
Z T

0

oto
2
xv

� �
oto

2
xv

0� �� �
x¼2p

dt

¼ �
Z T

0

o2t o
2
xv

� �
o2xv

0� �� �
x¼2p

dt þ oto
2
xv

� �
o2xv

0� �� �
x¼2p

n ot¼T

t¼0
; ð100Þ

so that the corresponding adjoint system is now

L�v� ¼ 0; x 2 X; t 2 ½0; T �;
v�ð0; tÞ ¼ v�ð2p; tÞ ¼ 0; t 2 ½0; T �;
oxv�ð0; tÞ ¼ 0; oxv�ð2p; tÞ ¼ �o2t o

2
xvð2p; tÞ þ dðt � T Þ oto

2
xv

� �		
x¼2p

; t 2 ½0; T �;
v�ðx; 0Þ ¼ 0; x 2 X:

8>><>>:
This system must be interpreted in the sense of a distribution, as one of the boundary conditions involves a

‘‘delta function’’ in time, effectively forcing the adjoint system from the ‘‘corner’’ of the space–time domain.
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The fact that here, unlike in all the previous cases, we are strictly able to identify only a weak form of the

adjoint system is not considered an insurmountable problem, as there are well-established methods for the

numerical approximation of such systems.

6.2.3. Adjoint derivation with the H 1 inner product

We now derive the adjoint using the H 1 inner product (41), and write out the complete form of the term

b1 appearing in this relation as

b1 ¼
Z 2p

0

ðoxv0Þ oxv�;H
1


 �h it¼T

t¼0
dxþ

Z T

0

j oxv�;H
1


 �
o2xv

0� �hn
� o2xv

�;H1

 �

ðoxv0Þ
i

þ j oxv�;H
1


 �
oxðvv0Þ

h
� o2xv

�;H1

 �

vv0 þ o�1
x vo3xv

�;H1

 �

v0
i
þ 4 oxv�;H

1

 �

o4xv
0� �h
� o2xv

�;H1

 �

o3xv
0� �

þ o3xv
�;H1


 �
o2xv

0� �
� o4xv

�;H1

 �

oxv0
� �iox¼2p

x¼0
dt:

Making use of the expression for L�;H1

in (42), we now define the new adjoint system as

L�;H1

v�;H
1 ¼ 0; x 2 X; t 2 ½0; T �;

o2xv
�;H1ð0; tÞ ¼ o2xv

�;H1ð2p; tÞ ¼ 0; t 2 ½0; T �;
o3xv

�;H1ð0; tÞ ¼ 0; o3xv
�;H1ð2p; tÞ ¼ o2xvð2p; tÞ; t 2 ½0; T �;

v�;H
1ðx; T Þ ¼ 0; x 2 X;

8>><>>: ð101Þ

which allows us to re-express the differential of the cost functional as

J0
bð/;/

0Þ ¼ �
Z T

0

o4xv
�;H1
			
x¼0


 �
/0 dt ¼ rL2ð0;T ÞJb;/

0

 �

L2ð0;T Þ
: ð102Þ

As a result, the L2 gradient can be extracted as

rL2ð0;T ÞJb ¼ �o4xv
�;H1ð0; tÞ:

By comparing this to the standard formulation culminating with (93), we note that the same L2 gradient of
the cost functional is now obtained by applying a higher-order differential operator to the adjoint field

obtained in the new formulation, which is consistent with the relationship between the corresponding

expressions for the L2 gradient in the periodic case as tabulated in Table 1.

6.2.4. Preconditioning the gradient

The control / in the present problem is a function of time only, and new gradients of the cost function

(89) can be obtained by identifying its differential with an inner product (88b) incorporating either deriv-

atives (p ¼ 1), or anti-derivatives (p ¼ �1) with respect to the time variable. In the former case we obtain

J0
bð/;/

0Þ ¼ �
Z T

0

o2xv
�		

x¼0


 �
/0 dt ¼ rH1ð0;T ÞJb;/

0

 �

H1ð0;T Þ
; ð103Þ

so that the following holds

o2trH1ð0;T ÞJb ¼ o2xv
�
		
x¼0

;

otrH1ð0;T ÞJbð0; 0Þ ¼ otrH1ð0;T ÞJbð0; T Þ ¼ 0:

(
ð104Þ

We see that the new gradient is obtained by solving this elliptic-in-time boundary-value problem, and

therefore will be smoother in the time domain. In the spirit of Section 4.4, this approach can be generalized
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by considering an inner product which is a combination of the L2 and H 1 terms, as this would allow us to

focus the optimization on a specific range of time scales that are of interest in a given optimization problem.
7. Discussion and conclusions

In this paper we have identified and related the four opportunities for generalizing the formulation of an

adjoint-based gradient optimization algorithm. The first opportunity concerns the choice of the specific

form of the equation assumed to govern the system evolution. The remaining three opportunities are re-

lated to the choice of the norm and the inner products (collectively referred to in the paper as ‘‘brackets’’)

on the three space–time domains that are of interest in a generic optimization problem applied to an un-
steady PDE system. Most studies to date have used L2 brackets on all three of these space–time domains. In

the present study we have explored formulations based on the more general Sobolev brackets, which in-

clude the L2 brackets as special cases. Choosing an alternative form of the evolution equation together with

the adoption of different Sobolev brackets has the effect of emphasizing or de-emphasizing different length-

and time-scales in the definition of the cost functional, the adjoint operator and the associated adjoint field,

and the gradient of the cost functional. These opportunities allow one to fine-tune the optimization al-

gorithm to the specific length- and time-scales of interest. By so doing, one may make the original PDE

optimization problem more ‘‘regular’’, and thereby easier to discretize and solve numerically.
The four regularization opportunities discussed in Section 4 fall into two categories: those that affect the

descent direction (i.e., targeting the cost functional in Section 4.2 and preconditioning the gradient in

Section 4.4), and those that affect the manner in which a given descent direction is computed (i.e., changing

the form of the evolution equation in Section 4.1 and the inner product in Section 4.3). In the discrete,

finite-precision setting, all four of these opportunities are significant, and the different opportunities may be

used to amend the different elements of the algorithm. For example, gradient extraction performed using an

inner product which combines the H�1, L2, and H 1 brackets was shown to be equivalent to applying a

suitable scale-dependent filter to the adjoint field. A low-pass filter of this sort is useful to employ when the
high-frequency components of the system are somehow considered ‘‘less significant’’ or ‘‘corrupted by

noise’’ during the optimization process in the multiscale system. In a data assimilation problem this could

be the case, for instance, when one is attempting to obtain a long-term forecast, in which the smallest-scale

variations of the initial conditions are thought to play a relatively unimportant role. On the other hand, a

band-pass filter could be useful to employ when one is attempting to obtain a short-term ‘‘meso-scale’’

forecast, in which the small-scale variations of the initial conditions are again thought to play a relatively

unimportant role and the large-scale variations of the initial conditions are determined by a separate

(global-scale) optimization code. Optimization based on an alternative form of the evolution equation
becomes useful when a numerical implementation of the primitive form of the evolution equation is not

readily available, but an implementation of a derived form exists, and the adjoint code is to be generated

using automatic techniques (e.g., such as described in [42]). If, as is often the case, one is ultimately in-

terested in obtaining sensitivities with respect to the primitive variables, then the present framework pro-

vides guidelines on how such sensitivities can be obtained from optimizations based on derived forms of the

evolution equation.

As indicated in the literature survey in Section 1, approaches related to some of the regularization

options presented here had already been mentioned in earlier studies. The present paper examines in detail
all of the different opportunities and attempts to unify them into a coherent framework by highlighting the

relations between the different possibilities. It should be remarked that the same set of regularization op-

portunities also applies in a straightforward fashion to the ‘‘robustified’’ framework for noncooperative

(‘‘worst case’’) optimization developed by Bewley et al. [41], thus allowing for tunable incorporation of

model and measurement errors into a single framework.
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The presented framework opens up the possibility for adoption of a wide range of regularization

strategies. In order to illustrate these opportunities in a clear and exhaustive fashion, we chose to analyze

them in this work based on a simple Kuramoto–Sivashinsky model forecasting problem. Moreover,
studying a spatially periodic system allowed us to recast parts of the analysis in Fourier space, which fa-

cilitated drawing conclusions regarding spatial regularity of the various fields involved. We also addressed

some of the issues arising when the framework presented is extended to systems governed by more com-

plicated evolutions equations (e.g., the 3D Navier–Stokes system), and systems evolving in bounded do-

mains. In such systems, analysis is more difficult, but the fundamental concepts remain the same. A

forthcoming paper will discuss the application of some of the regularization opportunities presented here to

complex optimization problems involving the Navier–Stokes system in 3D bounded domains.

The computational examples presented in this paper, while far short of exhaustively examining all of the
various regularization opportunities, highlighted a few of the computational advantages inherent in the

proposed framework. Based on a modified inner-product definition used to extract the gradient, a physi-

cally motivated multiscale preconditioning strategy was proposed which noticeably accelerates convergence

of an optimization procedure applied to a nonlinear multiscale system. Adoption of similar approaches to

the optimization of more complex systems of physical and engineering interest is currently underway.
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Appendix A. Adjoint derivation with the ‘‘H1-in-time’’ inner product

We present here yet another way of deriving the adjoint operator, namely using the bracket of the form

[cf. (20b)]

hz1; z2iHpð0;T ;L2ðXÞÞ,

Z T

0

Z 2p

0

opt z1
� �

opt z2
� �

dxdt: ðA:1Þ

We will focus here on the case with p ¼ 1, and define the ‘‘anti-derivative’’ operator o�1
t as

o�1
t zðtÞ,

Z t

0

zðt0Þdt0 �
Z T

0

zðt0Þdt0 ¼
Z t

T
zðt0Þdt0; ðA:2Þ

so that o�1
t zðT Þ ¼ 0 for any zðtÞ. In order not to further complicate the notation, we will use the symbolsL�

and v� to also denote the new adjoint operator and the new adjoint variable. The adjoint identity has now

the following form:

hv�;Lv0iH1ð0;T ;L2ðXÞÞ ¼ hL�v�; v0iH1ð0;T ;L2ðXÞÞ þ b1t; ðA:3Þ

where

L�v� ¼ �otv� þ 4o4xv
� þ j o2xv

� � o�2
t voxo2t v

�� �� �
; and

b1t ¼
Z 2p

0

"
ðotv�Þðotv0Þ þ ðotv�Þoxðvv0Þ þ v0o�1

t ðvoxo2t v�Þ
#
dx

( )t¼T

t¼0

þ
"
� � �
#x¼2p

x¼0

: ðA:4Þ



88 B. Protas et al. / Journal of Computational Physics 195 (2004) 49–89
We now define the new adjoint system as

L�v� ¼ �o�2
t H�ðHv� yÞ ¼ �o�2

t f ; x 2 X; t 2 ½0; T �;
oixv

�ð0; tÞ ¼ oixv
�ð2p; tÞ; t 2 ½0; T �; i ¼ 0; . . . ; 3;

v�ðx; T Þ ¼ 0; x 2 X;

8<: ðA:5Þ

which, when considering the spatially periodic problem defined in Section 3 and combining with (10), (A.3),

and (A.2), allows us to re-express the differential (9) as

J0ð/;/0Þ ¼
Z 2p

0

o2t v
�		

t¼0
/0 dx ¼ ðrL2J;/0ÞL2ðXÞ:

From this we identify the L2 gradient in terms of the new adjoint variable as

rL2J ¼ o2t v
�		

t¼0
:

We note that the new adjoint operator (A.4) and the RHS forcing term used in (A.5) have terms in-

volving o�1
t and are therefore nonlocal in time. However, as is evident from (A.2), at a given time instant t

the operator o�1
t depends on its argument in the interval ½t; T � only. Consequently, the system (A.5) can be

marched backward in time (i.e., from T to 0) using conventional numerical time-marching methods. We

also observe that, as compared to the primitive adjoint operator (15), the new adjoint operator (A.4) has a

different ‘‘advection’’ term in which additional time derivatives and anti-derivatives are present. In this

sense (A.4) is similar to (42), where the ‘‘advection’’ term includes additional space derivatives and anti-

derivatives. Consequently, we can expect system (A.5) to produce adjoint fields which are more regular in

the time domain (cf. Section 5.1).
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